Zhuque: Failure is Not an Option, it’s an Exception

1. Motivation

Persistent memory (PMEM) exposes fast storage devices
as byte-addressable main memory, allowing the proces-
sor to access persistent data via load and store instruc-
tions. The durability of PMEM allows an application’s
in-memory state to survive across system reboots and un-
expected power failures, but leveraging this capability is
not simple. The contents of traditional CPU caches do not
survive power loss, and, since caches may delay evicting
a modified cache line, writes may not reach PMEM in
program order.

Programming systems to help address the challenges of
persistent memory programming have proliferated over
the last decade. Unfortunately, due to volatile caches,
most current solutions impose significant performance
overhead and are based on fundamentally limited pro-
gramming models.

However, the advent of PMEM devices supporting
flush-on-fail semantics (such as eADR for NVDIMMs or
GPF for CXL devices) means that caches are, in properly
configured systems, effectively persistent [7]. Our work
demonstrates the potential these systems offer for much
simpler, faster PMEM programming models.

2. Limitations of the State of the Art

Broadly, three families of persistent memory program-
ming models have emerged, and each takes a different
approach to what consistency is and how the system
achieves it.

The first and largest family requires programmers to ac-
cess persistent state only through well-defined atomic op-
erations, often called transactions. This provides a clean
notion of consistency, but transactional approaches have
fundamental incompatibilities [2] with existing legacy
multithreaded code and have never gained significant trac-
tion in real systems.

The second family of systems is based on FASEs [3],
regions of code protected by locks, as atomic regions
for PMEM updates. Legacy code can run with mini-
mal changes, but FASE-based system have to deal with
arbitrary locking schemes. This leads to fundamental
weaknesses arising from external 10. Addressing these
weaknesses either cripples the system or reduces it essen-
tially to a transaction-based system.

The third family of systems takes the more dramatic
step of making everything in the system persistent via
whole system persistence (WSP) [9]. WSP provides
the conceptually simplest programming model: nothing

needs to be rewritten and, from the program’s perspective,
crashes never occur. WSP has faced two challenges: First,
making all of memory persistent has until recently been
infeasible, because regularly flushing volatile caches to
PMEM create enormous performance overheads. Second,
making the whole system persistent would require a far-
reaching redesign of many system components, for an
unclear benefit.

3. Whole Process Persistence

However, we think that WSP-style persistence is due for a
renaissance. New PMEM devices and platforms support
automatically flushing the cache hierarchy upon power
failure [7, 5]. For these systems, the caches are effec-
tively persistent, removing the main performance argu-
ment against WSP. Then, to address the second argument,
we narrow the scope to a single process, yielding Whole
Process Persistence (WPP).

WPP provides a simple abstraction to the process: its
entire memory is PMEM and will survive a power outage.
When the process is restarted after a power failure, it
receives a signal, which it can ignore or handle with a
signal handler. If the signal is ignored, or if the signal
handler does not exit, each thread continues execution at
the point where it was interrupted by the failure.

There are several benefits to this model over previous
work. Most importantly, WPP avoids the problems with
FASE- and transaction-based models by discarding the
concept of a failure-atomic section. To flush caches at
failure, GPF and eADR both use a System Management
Interrupt (SMI) which respects architectural semantics,
so the effects of an instruction on a process’s in-memory
state are guaranteed to survive a failure from the point at
which they are visible to other threads [6, 1, 4].

Further, restarting at the point of failure removes the
need to "redo" or "undo" any writes at recovery, and with
it the need to keep a persistent log and incur the cost of
extra writes to PMEM. Moreover, no longer needing to
define failure-atomic sections either reduces the program-
mer’s burden directly, compared to manually-annotated
failure-atomicity systems, or allows them to design con-
currency schemes orthogonal to persistency without in-
curring overhead, unlike lock-inferred systems.

4. Zhuque Runtime

To implement WPP, we developed Zhuque, a modified
version of musl-libc. libc provides C bindings for system
calls that allocate system resources including memory, file
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Figure 1: Life cycle of a Zhuque process.
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Figure 2: Zhuque Enables Newer Version of Memcached to Run on PMEM, Provides Significantly Better Performance

descriptors, and threads; Zhuque interposes on these bind-
ings in userspace, and modifies the dynamic loader (part
of libc), in order to provide WPP functionality. Figure 1
shows the process lifecycle under Zhuque.

These changes allow Zhuque to ensure that all of the
application’s state is stored in persistent memory, and to
track memory mappings and system calls so it can re-
construct the program’s address space and re-create its
kernel-resident state after a failure. Remaining volatile
architectural state (e.g., the register file) is preserved by
writing it to persistent memory at failure. This step could
be achieved with a simple change to the SMI setup (point-
ing the SMBASE to a PMEM region) [6], but since we
do not have access to the signing key required to install
modified platform firmware, we are unable to make that
change and are required to emulate this capability with
userspace signal handlers.

5. Preliminary Results

We evaluate Zhuque’s performance against other state-of-
the-art PMEM libraries on several applications, and we
evaluate its usability by making Python programs persis-
tent without modification. We removed all cache flushes
from the other libraries, to better model their performance
on a flush-on-fail system. Although Zhuque emulates the
state save at failure, we believe that an implementation
with a non-emulated save would have substantially simi-
lar performance to our results, because the emulation only
affects events at failure, not during normal execution.
Figure 2 shows the performance of two versions of
memcached on Zhuque and other PMEM libraries, com-
pared to a volatile baseline. Memcached’s synchroniza-
tion framework was rewritten to use fine-grained locking

across seven years of development and over thirty ver-
sions [8]. Most PMEM libraries have strict requirements
for the underlying concurrency strategy, making convert-
ing recent versions of memcached to run on PMEM a
complicated process. Zhuque places no restrictions on the
locking scheme, so the newest version (1.6.17) can run
unmodified on Zhuque. By simply running the newest
version on Zhuque (right-side), we can provide 7.5 the
throughput of the older version (left-side) of persistent
memcached with the same workload and thread count.
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