

remi.dulong@unine.ch

NVMM Cache design: Logging vs. Paging

Rémi Dulong1,2, Quentin Acher3, Baptiste Lepers1, Valerio Schiavoni1, Pascal Felber1, Gaël Thomas2

1University of Neuchâtel, Switzerland 2Télécom SudParis, Evry, France 3ENS Rennes, France

Work in progress paper:Work in progress paper: A comparison between two caching mechanisms A comparison between two caching mechanisms

NVMW23, Non-Volatile Memory Workshop 2023 - University of California, San Diego

Context
Modern NVMM is closing the gap between DRAM and persistent storage, both in terms of performance and features. Having both byte
addressability and persistence on the same device gives NVMM an unprecedented set of features, leading to the following question:

How should we design an NVMM-based caching system to fully exploit its potential?

We built and compared two caching mechanisms, NVPages and NVLog, based on two radically different design approaches.

NVPages

Design:
● One page cache in NVMM, used for reads and writes
● One redo-log per thread
● Inspired from the Linux Page Cache

Pros:
● Provides several GiB of non-volatile pages
● No DRAM footprint
● Simple design

Cons:
● Does not benefit from DRAM bandwidth

Conclusion

NVLog

Design:
● NVMM is used as a Log of pending writes
● A background thread writes changes to disk
● A small DRAM page cache keeps hot pages updated

Pros:
● Writes in NVMM, reads in DRAM
● Small DRAM footprint (a few GiB)

Cons:
● Complex design (Dirty cache miss, synchronization…)

NVMM Caches

Why should we consider NVMM caches?

● High persistence guarantees & Crash resilience
● Compatibility with legacy file systems
● Does not limit storage capacity to NVMM capacity
● Simpler than a hybrid file system

 What should a NVMM cache provide?

● A transparent POSIX-like interface
● High capacity with NVMM bandwidth & latencies

In its current state, NVLog seems to have a
clear edge over NVPages. It performed better
on all workloads, even on those we expected
NVPages to be more efficient. That said,
some additional logic should be added to both
caches implementations in order to evaluate
their performance on multithread workloads.

Inspired from NVCache (DSN’21): https://ieeexplore.ieee.org/document/9505164

Evaluation

Baseline: The “psync” IO engine of FIO uses regular pread and pwrite operations,
 with no guarantee of persistence.

ra
nd
r-
zi
pf

ra
nd
r

ra
nd
rw
-z
ip
f

ra
nd
rw

ra
nd
rw
90
-z
ip
f

ra
nd
rw
90

ra
nd
w
-z
ip
f

ra
nd
w

0

50

100

C
o
m
p
le
ti
o
n

ti
m
e
(s
)

FIO completion time on a 20 GiB file

NVLog 2 GiB NVPages 2 GiB psync

ra
nd
r-
zi
pf

ra
nd
r

ra
nd
rw
-z
ip
f

ra
nd
rw

ra
nd
rw
90
-z
ip
f

ra
nd
rw
90

ra
nd
w
-z
ip
f

ra
nd
w

0

50

100

C
o
m
p
le
ti
o
n

ti
m
e
(s
)

FIO completion time on a 20 GiB file

NVLog 100 GiB NVPages 100 GiB psync

read()

Evict

Cache miss

Disk
Pages (NVMM)Thread 1

…

write()

Thread 2

Thread n

Commit

Redo logs (NVMM)

DRAM

Clean
cache miss

Disk

Dirty
cache miss

Background
threadNVMM

read()

write()
Update

Log

https://ieeexplore.ieee.org/document/9505164

	Slide 1

