
NVMM cache design: Logging vs. Paging
Rémi Dulong∗‡, Quentin Acher†, Baptiste Lepers∗, Valerio Schiavoni∗

, Pascal Felber∗, Gaël Thomas‡
University of Neuchâtel, Switzerland∗ — ENS Rennes, France† — Télécom SudParis, France‡

Abstract—Modern NVMM is closing the gap between DRAM
and persistent storage, both in terms of performance and fea-
tures. Having both byte addressability and persistence on the
same device gives NVMM an unprecedented set of features,
leading to the following question: How should we design an
NVMM-based caching system to fully exploit its potential? We
build two caching mechanisms, NVPages and NVLog, based
on two radically different design approaches. NVPages stores
memory pages in NVMM, similar to the Linux page cache (LPC).
NVLog uses NVMM to store a log of pending write operations
to be submitted to the LPC, while it ensures reads with a small
DRAM cache. Our study shows and quantifies advantages and
flaws for both designs.

I. INTRODUCTION

The emergence of modern NVMM is a great opportunity
to implement known designs and adapt them, or invent new
ones. We tried these two approaches with caching mechanisms
for a file system stored in secondary storage. Indeed, caching
data for slower tier storage devices (SSD or HDD) is a great
use case for NVMM. It provides high persistence guarantees,
higher read and write bandwidth and lower latencies than
most persistent block devices [1]. In this study, we target
applications that require a high level of data consistency,
which would highly solicit a regular disk with frequent calls to
fsync. For such applications, we propose a persistent cache
able to give fast persistence guarantees without having to wait
for a slow secondary storage.

II. NVMM-BASED CACHING

NVPages and NVLog are POSIX-like IO shared libraries.
They provide standard IO functions, such as open, pread,
pwrite, close, etc. When the shared library is loaded,
NVMM is mapped, and data structures are initialized. A flag
in NVMM is set to 1 when the program is loaded, and set to 0
when it is unloaded properly. This flag allows both caches to
start a recovery procedure in case of a previous crash, flushing
to disk every modification still pending in cache when the
crash occurred. So far, they do not support multiple threads.
However, they differ in their core implementation, depicted in
Fig. 1 and Fig. 2.

NVPages. NVPages is designed as a regular page cache,
with a few adaptations to make it compliant with NVMM and
its persistence guarantees. 4 KiB pages are stored in NVMM.
When a page is accessed, a radix tree in volatile memory
looks for a volatile metadata structure that contains a pointer
to the non-volatile page. In order to ensure consistency after
a crash, calls to pwrite first write data in a redo log stored
in persistent memory. Then, the redo log content is flushed to

NVPages

read()

Evict

Cache miss

Disk
Pages (NVMM)Thread 1

…

write()

Thread 2

Thread n

Commit

Redo logs (NVMM)

Fig. 1. Core design of NVPages

the actual non-volatile page cache. The page cache eviction is
done with a least recently used (LRU) policy. NVPages can
be used in O_DIRECT mode, bypassing the LPC to interact
directly with the disk with aligned 4 KiB blocks. We do not
report performance with this mode since we measured that
bypassing the LPC reduces performance in read. As described
in Fig.1, NVPages is designed to be adapted for multithreaded
workloads.

NVLog. NVLog builds atop NVCache [2], ported to work
as a shared library. It embeds two main components: a NVMM
log, and a small DRAM page cache. When the pwrite
function is called, data is written to the NVMM log. A
background thread continuously waits for log entries and
writes them to disk as soon as possible. To ensure consistency
in this configuration, every call to pread should get the
page from disk and check if patches (log entries) have to be
applied before returning the data. As this would make reads
very slow, NVLog keeps a small DRAM page cache (2 GiB)
with up-to-date data. It also keeps track of pages that would
need to be patched before returning, so it only searches in the
NVMM log when necessary. For reads, NVLog uses the LPC
as an extension of NVLog’s DRAM cache, from which it can
fetch data instead of waiting for the disk. For writes, NVLog
submits changes to the LPC in batches, before calling fsync
to ensure the data is persisted on disk. This way, it benefits
from LPC optimizations, such as merging consecutive writes
on the same offset before writing the page on disk. Its design
is complex because of the internal synchronization between
the application and the background thread. Adapting it for
multithread remains challenging.

Discussion. NVLog is designed to absorb bursts of writes
in its log, but may not be suited for mixed or parallel IOs.
It only keeps a small amount of pages updated in DRAM.
Increasing the amount of NVMM in NVLog does not change
the probability of cache hit. Instead, NVPages is designed
to maximize the probability of cache hit by keeping a lot
of memory pages available in NVMM, as almost all of its



NVLog

DRAM

Clean
cache miss

Disk

Dirty
cache miss

Background
threadNVMM

read()

write()
Update

Log

Fig. 2. Core design of NVLog

allocated NVMM is dedicated to pages. We expected the latter
approach to be more efficient for mixed IOs, reducing the
amount of interactions with the disk.

III. EVALUATION

Our benchmark machine is a Supermicro mono-socket ma-
chine with an Intel Xeon Gold 6326 CPU, 2 modules of
128 GiB of Intel Optane v200 DCPMM [3], and a 512 GB
NVMe SSD, running Ubuntu 20.04 LTS.

We evaluated our 2 systems with FIO [4]. These tests are
performing 20 GiB of random accesses through a 20 GiB-wide
file. In Fig. 3 and Fig. 4, we submit pure reads (randr), 50%
reads and 50% writes (randrw), 90% reads and 10% writes
(randrw90), and pure writes (randw). Then, to show the
efficiency of the caching policies, we measure the same tests
with a Zipfian distribution [5] that ensures 95% of random
offsets will be in 5% of the file. Each bar is the average com-
pletion time of 5 runs. For each plot, we compare NVPages
and NVLog with a given amount of NVMM allocated. Our
reference is the regular psync IO engine of FIO which uses
regular POSIX functions, measuring the performance of the
LPC in DRAM. With this baseline, there is no guarantee
of persistence, while NVPages and NVLog both guarantee
persistence as soon as a pwrite call returns. Having similar
persistence guarantees with psync is possible, by enabling
a fsync call after each pwrite. However, completion times
were so long that we did not include them in these plots (more
than an hour for 20 GiB of pure writes).

We expected NVPages to be less efficient in pure write
workloads, because the use of redo logs leads to write every
data to NVMM twice. On the other hand, we also expected it
to be more efficient than NVLog on mixed IO workloads,
because it can store much more data in its page cache,
increasing the cache hit probability and reducing interactions
with the SSD to the minimum.

However, these results show NVLog performs significantly
better in almost every workload. The pure read performance of
NVPages reveals a fundamental flaw that prevents it to perform
better with mixed IOs. By design, cache misses have a cost
in NVPages, because they imply to copy the missing page to
NVMM. But the main flaw in this design is the bandwidth
limitation of current NVMM compared to DRAM. NVPages
can take pages from the LPC in DRAM, but will then require
to read in NVMM to retrieve them for reads or writes. On the

randr-zipf
randr

randrw-zipf
randrw

randrw90-zipf
randrw90

randw-zipf
randw

0

50

100

C
om

pl
et

io
n

tim
e

(s
)

FIO completion time on a 20 GiB file

NVLog 2 GiB NVPages 2 GiB psync

Fig. 3. FIO benchmarks with 2 GiB of NVMM cache

randr-zipf
randr

randrw-zipf
randrw

randrw90-zipf
randrw90

randw-zipf
randw

0

50

100

C
om

pl
et

io
n

tim
e

(s
)

FIO completion time on a 20 GiB file

NVLog 100 GiB NVPages 100 GiB psync

Fig. 4. FIO benchmarks with 100 GiB of NVMM cache

contrary, NVLog keeps fresh pages in DRAM, which allows
us to get the full potential of DRAM read bandwidth, as we
measured in Fig. 3 and Fig. 4 with randr and randr-zipf
benchmarks.

IV. CONCLUSION AND FUTURE WORK

In its current state, NVLog seems to have a clear edge
over NVPages. It performed better on all workloads, even
on those we expected NVPages to be more efficient. That
said, some additional logic should be added to both caches
implementations in order to evaluate their performance on
multithread workloads. From a design point of view, NVPages
has several advantages and may outperform NVLog on parallel
IOs thanks to its independent redo logs (while NVLog must
share the same log with all threads). Furthermore, the main
bottleneck we found in NVPages relies on the difference of
performance between DRAM and NVMM.

REFERENCES

[1] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
Performance Measurements of the Intel Optane DC Persistent Memory
Module,” 2019.

[2] R. Dulong, R. Pires, A. Correia, V. Schiavoni, P. Ramalhete, P. Felber,
and G. Thomas, “NVCache: A Plug-and-Play NVMM-based I/O Booster
for Legacy Systems,” in 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2021,
pp. 186–198.

[3] “Intel 3D XPoint™ Technology,” https://intel.ly/2XBUk4M, 2019.
[4] J. Axboe, “Fio-flexible I/O tester synthetic benchmark,”

https://github.com/axboe/fio, accessed: 2023-01-5.
[5] “Zipfian law,” https://en.wikipedia.org/wiki/Zipf%27s law, accessed:

2023-01-5.


