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1 Introduction

Persistent memory (PM), a storage-class memory, breaks the
traditional dichotomy of storage and memory. It offers byte
addressability, non-volatility, low latency, and high band-
width. Recent characterization studies show that PM has
many subtle performance characteristics [3, 6, 8], posing a
significant challenge for storage stacks to utilize PM perfor-
mance efficiently.
Such a challenge arises from two unique PM character-

istics. The first factor is the tension between concurrent
accesses and PM performance. In particular, a small number
of threads underutilize PM bandwidth, while a high number
of concurrent access threads lead to PM performance
meltdown. The meltdown happens because a high number
of concurrent access threads render the caching and
prefetching in PM inefficient [1, 8]. The second factor is the
pronounced NUMA impact on PM, as several prior works
found that remote NUMA accesses on PM are much slower
than DRAM, leading to at least 2× bandwidth reduction [1, 6].
Unfortunately, none of the existing PM file systems [2, 4, 7]
utilizes these two unique PM characteristics effectively.
This paper presents Odinfs: (Opportunistic DelegatIoN

File System), a NUMA-aware PM file system that maximizes
PM performance1. We design Odinfs with three major de-
sign goals: (1) Limit concurrent PM accesses (access arbi-

tration): Odinfs controls the number of PM access threads
to maintain the maximal PM performance within a NUMA
node. (2) Localized PM accesses (NUMA-awareness):
Odinfs ensures threads always access the local PM within
a NUMA node, thereby avoiding the PM NUMA impact. (3)
Automatic parallel PM accesses (automatic paralleliza-

tion): Odinfs automatically parallelizes applications’ PM
access requests across all NUMA nodes without application
modification. Odinfs thus efficiently utilizes aggregated PM
bandwidth, thereby improving application performance. As
detailed in the next section, Odinfs achieves these goals by
proposing a new approach—opportunistic delegation—that
decouples PM data accesses from application threads.

2 Odinfs Design

Figure 1 shows the key components of Odinfs and their
typical workflow. We next present the key design of Odinfs
and explain how they meet the design goals of Odinfs.
(1) NUMA-striped data layout for cumulative PM band-

width utilization. Unlike other NUMA-aware PM file sys-

1This work has been accepted to OSDI ’22 [9].
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Figure 1: Overview of Odinfs. Each NUMA node has delega-
tion threads that access local PM on behalf of application threads.
Odinfs stripes the file data across all PM NUMA nodes. 1 An ap-
plication thread issues a read system call. 2 Odinfs divides the
system call into multiple access requests based on the stripe size
and sends them to the delegation threads. 3 The delegation threads
read from PM in different NUMA nodes in parallel to service the
access requests. 4 The application thread returns.

tems that try to localize file accesses within a single PM
NUMA node [5], Odinfs stripes the data of every file across
PM on each NUMA node in a round-robin manner. Odinfs
makes this design choice since it canminimize the PMNUMA
impact with delegation, as detailed below. Furthermore, strip-
ping file data across PM enables Odinfs to exploit all avail-
able PM bandwidth to handle application requests, which
opens the door for automatic request parallelization.
(2) Delegation-based PM accesses to maximize PM per-

formance. A key insight in Odinfs is that the access ar-
bitration, NUMA-awareness, and automatic parallelization
design goals can be simultaneously achieved by decoupling
PM data accesses from application threads through dele-
gation. In particular, for each NUMA node, Odinfs creates
several background threads (delegation threads). Only the
delegation threads can access PM. When the application
thread needs to access PM, it first checks which NUMA node
the PM address belongs to and then sends the PM access re-
quests to one of the delegation threads on that NUMA node.
The delegation thread performs the access on behalf of the
application thread and informs the application thread when
the access completes.

Since only the delegation threads can access PM, they effec-
tively act as a central entity to arbitrate PM access. Regardless
of the application thread count, delegation threads decide the
level of concurrent accesses to PM. Thus, Odinfs accesses



PM with a thread count that avoids the PM performance col-
lapse with many concurrent access threads. This effectively
achieves the access arbitration design goal. Since the dele-
gation threads are in the same NUMA node as PM, Odinfs
always access PM locally. Thus, Odinfs minimizes the PM
NUMA impact, achieving the NUMA-aware design goal.
(3) Automatic parallelization at the system call bound-

ary. The data striping and the delegation threads allow
Odinfs to serve I/O requests from applications in paral-
lel across all the NUMA nodes. Moreover, the POSIX inter-
face enables Odinfs to automatically parallelize the requests
without modifying applications. Specifically, Odinfs divides
all data system call (e.g., read, write, pread, writev) requests
into multiple independent sub-requests based on the stripe
size, and sends them to the corresponding delegation threads.
The delegation threads then execute these requests by ac-
cessing PM in different NUMA nodes in parallel. Figure 1
illustrates the case. In this way, Odinfs achieves the auto-
matic parallelization design goals.
(4) High scalability with full PM performance. Delegat-
ing PM access allows Odinfs to maximize PM performance.
Odinfs further maximizes concurrent accesses to ensure ap-
plications can benefit from the performance gains even under
the high contention case. Specifically, Odinfs increases the
disjoint data access parallelism with a readers-writer range
lock for each inode. This enables concurrent writes to dis-
joint regions and concurrent reads from the same file region.
The use of range lock poses a significant challenge for en-
forcing crash consistency. Odinfs overcomes this issue by
preserving the whole inode lock and falling back to it for
concurrency control if needed.

3 Evaluation

Evaluation environment.We conduct our evaluation on
an eight-socket server. Each socket equips a 28-core Intel
Xeon processor (224 cores in total) and six 128GB Intel
Optane DIMMs interleaved at 4KB. We configure Odinfs
to run on all eight NUMA nodes with twelve delegation
threads on eachNUMAnode. We compareOdinfswith ext4,
PMFS [2], NOVA [7], and WineFS [5]. We further include one
setup (ext4(RAID0)) by creating a RAID0 across all eight PM
NUMA nodes and mount ext4 on top of it. We also emulate
a non-existent setup: NOVA(MN) (NOVAwith multiple nodes) to
estimate the performance of a NUMA-aware NOVA by mount-
ing a single instance of the NOVA file system on each NUMA
node and evenly distribute the testing files among instances.
Throughput. We use fio to measure throughput by let-
ting each thread access a private 1GB file. Figure 2 shows
the throughput of all evaluated file systems. For 4K-read,
only Odinfs and NOVA(MN) scale beyond one NUMA node,
outperforming other file systems by 9.4× with 224 threads.
For 4K-write, when the thread count is low, Odinfs suffers
from the communication overhead of delegation and is up
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Figure 2: Throughput of evaluated file systems.

to 62% slower than other file systems. However, Odinfs can
maintain its throughput thanks to limiting PM accesses, out-
performing others by up to 8.1×. With the 2MB access size,
Odinfs benefits from accessing all PM NUMA nodes in par-
allel to serve IO requests, outperforming other file systems
by 1.1× to 24.7×, and up to 14.8× for 2M-read, and 2M-write,
respectively.
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