
BlockFlex: Enabling Storage Harvesting with Software-Defined Storage*

Benjamin Reidys‡ Jinghan Sun‡ Anirudh Badam† Shadi Noghabi† Jian Huang

University of Illinois at Urbana-Champaign †Microsoft Research

Abstract

Cloud platforms today make efficient use of storage resources
by slicing them among multi-tenant applications on demand.
However, our study discloses that cloud storage is still seriously
underutilized for both allocated and unallocated storage. Al-
though cloud providers have developed harvesting techniques
to allow evictable virtual machines (VMs) to use unallocated
resources, these techniques cannot be directly applied to storage
resources, due to the lack of systematic support for the isolation
of space, bandwidth, and data security in storage devices.

In this paper, we present BlockFlex, a learning-based storage
harvesting framework, which can harvest available flash-based
storage resources at a fine-grained granularity in modern cloud
platforms. We rethink the abstractions of storage virtualiza-
tion and enable transparent harvesting of both allocated and
unallocated storage for evictable VMs. BlockFlex explores
both heuristics and learning-based approaches to maximize the
storage utilization, while ensuring the performance and secu-
rity isolation between regular and evictable VMs at the storage
device level. We develop BlockFlex with programmable solid-
state drives (SSDs) and demonstrate its efficiency with various
datacenter workloads.

1 Background and Motivation

In modern cloud platforms, storage devices such as flash-based
solid-state drives (SSDs) have been virtualized as system-wide
shared resources to provide storage services across multiple ap-
plication instances [2, 4]. This enables efficient use of storage
capacity and bandwidth by slicing them among multi-tenant
virtual machines (VMs). However, our study of the event traces
collected from popular cloud platforms [1, 3] reveals that stor-
age I/O is still significantly underutilized for both unallocated
(unsold) and allocated storage.

To improve resource efficiency in the cloud, providers of-
fer evictable VMs (i.e., Spot VMs or Harvest VMs). These
evictable VMs allow users to use unallocated resources with low
priority, i.e., the resources of evictable VMs can be reclaimed
by regular VMs at any time. Recent studies [2] advanced this
technique by improving the resource allocation and scheduling
for evictable VMs with heuristic-based harvesting approaches.

However, prior work on resource harvesting mainly focused
on CPU and memory resources, which cannot be directly ap-
plied to cloud storage for three reasons. First, current cloud
storage virtualization approaches do not support storage har-
vesting, and dynamic reallocation of resources is not feasible.
Second, cloud storage usually stores sensitive application data,
which requires careful management for storage allocation and
deallocation. Third, cloud storage can suffer from significant
harvesting overhead due to the block erasure and metadata
updates, which requires specific optimizations.

* This work has been published at OSDI 2022 [5].
‡ Co-primary Authors.

vSSD Manager
ghost vSSD

ghost vSSD
......

Unallocated VM Regular VM HarvestVM HarvestVM

Online
Predictor

vSSD
Online

Predictor

vSSD
Online

Predictor

vSSD
Heuristic-based

Predictor

vSSD

SSD Virtualization

Harvested
Storage

	 BlockFlex

Figure 1: System overview of BlockFlex.

2 Characterization of Storage Harvesting

We first conduct a characterization study of storage resources
that could be harvested in cloud platforms. Although storage
virtualization is widely deployed in cloud platforms, we ob-
serve that storage devices are still significantly underutilized
for allocated and unallocated storage resources.
Allocated storage resources. We conduct the storage uti-
lization study based on the open-source cloud traces from
Google [3]. The cumulative distribution of storage capacity
across the VMs of Google Cloud [3] (see Baseline in Figure 2).
We find that 20% of the VMs almost did not use their allocated
storage capacity, 50% of the VMs used only 26.4% of the al-
located storage capacity on average. Although different VMs
may allocate different storage capacities, our study shows that
their capacity utilization is surprisingly low.

The low utilization of allocated cloud storage resources is
mainly due to two reasons. First, cloud platforms usually al-
locate storage resource associated with each VM at a coarse-
grained granularity for simplified storage management. Second,
storage allocation is usually conducted in a static manner, while
the storage usage of the workloads running in each VM changes
dynamically. Therefore, the user of a VM has to over-provision
sufficient storage for the peak demand upon VM creation.
Unallocated (unsold) storage resource. Unallocated (unsold)
storage in cloud platforms is another source of storage underuti-
lization. This is because cloud providers usually over-provision
VMs in their resource pool to satisfy the elasticity requirement
from customers [2]. As each unsold VM consumes a fixed
amount of resources (e.g., processor cores, memory, and stor-
age), it will result in unallocated storage resources.

To further understand unallocated storage, we analyze traces
of unsold storage resources from Azure [2]. Nearly 70% of
cloud servers have unsold storage resources, 50% of the servers
have an average of 17.3% of their storage unallocated. Given
that a datacenter has thousands of servers, the unallocated stor-
age is another critical source of storage underutilization.

3 Design and Implementation

To overcome storage underutilization, we present BlockFlex
(Figure 1), which enables transparent and fine-grained storage

Table 1: Exception handling for different scenarios.
ID Harvestable

Storage
Demanded

Storage
Possible Exceptions

1 Over-predict Over-predict Waste or Early Reclamation or N/A
2 Over-predict Under-predict Under-Harvest or Early Reclamation
3 Under-predict Over-predict Waste
4 Under-predict Under-predict Under-Harvest or Waste or N/A

harvesting for both allocated and unallocated storage while
ensuring data privacy for users with low harvesting overhead.
New Abstraction for Storage Harvesting. To enable transpar-
ent and fine-grained storage harvesting, we rethink the abstrac-
tions of storage virtualization for flash-based SSDs. The recent
development of software-defined flash (SDF) in datacenters [4]
allows VMs to map their storage to dedicated flash channels.
We build on top of the SDF abstraction and propose a new
class of virtualized SSDs (vSSD), named ghost vSSD (gSSD).
A gSSD is created by harvesting free flash blocks from either
unallocated or allocated but unused storage. Its block interface
is the same as that of the regular vSSD. Similar to vSSDs, each
gSSD has a block-level mapping table to index the mappings of
logical block addresses to physical block addresses, and a free
block list to manage the free flash blocks.
Management of the gSSDs. BlockFlex manages the lifecycle
of each gSSD with a gSSD pool. BlockFlex supports the follow-
ing operations: (1) Creation: A vSSD creates a gSSD when its
predictor predicts that it will have available storage resources for
harvesting. In order to create a new gSSD, BlockFlex will har-
vest free blocks from the vSSD and create a mapping table for
them; (2) Lookup: To facilitate fast gSSD lookup, we organize
gSSDs in a set of lists in the vSSD manager with considering
the sorting in three dimensions: storage bandwidth, capacity,
and time available for harvesting; (3) Expiration: For the ex-
pired gSSDs that have not been allocated to any harvest VM,
BlockFlex will remove them from the list; (4) Harvesting: Upon
receiving a request for storage harvesting, BlockFlex will check
the gSSD pool to identify a best-fit match for the requested
storage capacity, bandwidth, and time available for harvesting.
BlockFlex uses the best-fit matching policy to minimize the
waste of storage resources. These requested parameters are
obtained from the predictors deployed in the vSSD of the corre-
sponding harvest VM; (5) Reclamation: When a harvest VM
finishes its jobs, the harvested gSSDs will be reclaimed to the
gSSD pool. Upon gSSD reclamation, the corresponding entries
in the address mapping table of the vSSD will be removed.
Prediction of Storage Availability and Demand. To best
utilize harvestable resources, we use predictions. For the unal-
located (unsold) VMs, we use a heuristic-based approach, using
our study to characterize the unallocated storage. For allocated
storage, we use a lightweight online learning approach. We pre-
dict the harvestable storage resources for allocated VMs, and
demanded storage resources for harvest VMs. Since the predic-
tions for allocated VMs and harvest VMs are both determined
by their workloads, they use the same learning-based approach
but different learning parameters. The inputs are statistical
measures gathered from the bandwidth, IOPS, and storage uti-
lization. The predictors generate the predicted bandwidth (in
channels), capacity (in GB), and duration of resource demands.
Exception Handling in Storage Harvesting. Since we use
predictions to improve resource utilization, BlockFlex must also
handle mispredictions. As shown in Table 1, mispredictions
could mainly cause three exceptions: waste of storage resources,
early resource reclamation, and under-harvesting.

First, BlockFlex could waste storage resources when mispre-

0 20 40 60 80 100
Percentage of VMs (%)

0

20

40

60

80

100

St
or

ag
e

C
ap

ac
ity

 U

til
iz

at
io

n
(%

)

Baseline (Avg)
Baseline (Max)
Blockflex (Avg)
Blockflex (Max)

Figure 2: The capacity utilization of allocated cloud storage.

dictions leave them unused. As we over-provision demanded
storage in the harvest VMs to avoid reclamations, it is inevitable
to cause some waste of storage resources. To handle early
reclamation, BlockFlex migrates data between gSSDs at block
granularity to minimize the impact on running applications.
BlockFlex reclaims the old gSSD while ensuring its flash blocks
are erased before being used by the regular vSSD. Finally, to
handle under-harvesting, BlockFlex will harvest new gSSDs
until meeting the demand. However, if no gSSD is available,
BlockFlex will report an exception to the harvest VM, resulting
in a termination or delay of job execution in the harvest VM.
Key Contributions. We summarize the contributions below:
• We conduct a characterization study of the storage efficiency

in different cloud platforms, motivating storage harvesting.
• We rethink the abstractions of storage virtualization in modern

cloud platforms for enabling fine-grained storage harvesting
with software-defined flash.

• We build a learning-based storage harvesting framework
named BlockFlex that can harvest both unallocated and allo-
cated storage resources.

• We develop predictors that can make efficient predictions
for both storage demand and availability in terms of storage
capacity, bandwidth, and the time available for harvesting.

BlockFlex Implementation. We implement the gSSD abstrac-
tion of BlockFlex using a programmable SSD, whose con-
troller allows read/write/erase operations against the raw flash
resources. Each model is implemented with one hidden LSTM
layer fully connected with the input and output layers.
BlockFlex Evaluation. Our evaluation demonstrates that: (1)
BlockFlex gives 1.25x improvement in storage utilization for
cloud platforms by leveraging both underutilized and unallo-
cated storage resources (see Figure 2 for improvement in storage
capacity); (2) BlockFlex improves the performance of harvest
VMs by up to 60% while minimizing the impact on regular
VMs; (3) BlockFlex introduces negligible overhead to storage
management. Please see the detailed evaluation in [5].

References
[1] “Alibaba Cluster Trace..” https://github.com/alibaba/

clusterdata/blob/master/cluster-trace-v2018/
trace_2018.md.

[2] P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell,
S. Pasupuleti, T. Moscibroda, S. Elnikety, M. Fontoura, and R. Bianchini,
“Providing slos for resource-harvesting vms in cloud platforms,” in Pro-
ceedings of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20), Nov. 2020.

[3] “Google Cluster Trace..” https://github.com/google/
cluster-data/blob/master/ClusterData2011_2.md.

[4] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma, and
M. K. Qureshi, “Flashblox: Achieving both performance isolation and
uniform lifetime for virtualized ssds,” in Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST’17), Feb. 2017.

[5] B. Reidys, J. Sun, A. Badam, S. Noghabi, and J. Huang, “BlockFlex:
Enabling storage harvesting with Software-Defined flash in modern cloud
platforms,” USENIX Association, July 2022.

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md

	Background and Motivation
	Characterization of Storage Harvesting
	Design and Implementation

