
FusionFS: Fusing I/O Operations using CISCOps in Firmware File Systems
Jian Zhang∗, Yujie Ren∗, Sudarsun Kannan

Rutgers University

1 Introduction
Modern high bandwidth and low-latency storage technolo-

gies such as NVMe SSDs and 3D-Xpoint have significantly
accelerated I/O performance leading to better application per-
formance. Yet, the combination of software and hardware I/O
overheads that include system calls, data movement, and com-
munication cost in the application and the OS, and the storage
hardware latency (e.g., PCIe) continue to be an Achilles heel
in fully exploiting storage hardware capabilities.

A recent focus is to reduce software indirections by moving
filesystems to userspace and avoiding system calls and kernel
traps for data and metadata updates [3]. Although effective,
the dominating I/O overheads such as data and metadata move-
ment cost, host and device communication cost (e.g., PCIe
latency), and indirect costs like polling or interrupts remain.
Henceforth, we refer to the combination of above overheads,
which includes system calls, as dominating I/O overheads.

Another design point to reduce I/O overheads is the rein-
carnation of near-storage processing. Vendors are introducing
computational storage devices (CSD) that embed in-storage
processors that range from ARM cores to FPGAs.

More broadly, these techniques can be classified into sys-
tems that focus on (1) in-storage compute offloading and (2)
in-storage filesystems and key-value stores designed to accel-
erate I/O and storage management. First, in-storage compute
offloading systems (which includes a majority of current CSD
solutions) such as PolarDB focus on data processing by rewrit-
ing application logic to offload computation. While beneficial,
these systems either lack storage management or delegate
management to the host file system. The former leads to a
lack of data and metadata integrity, crash consistency, durabil-
ity, or managing in-storage resources across tenants.

In contrast, in-storage management designs like CrossFS [6],
DevFS [4], and Insider [7] offload filesystems and key-value
stores inside the storage firmware for direct-I/O, bypassing the
OS. Unfortunately, these designs lack near-storage processing
capability leading to substantial data movement and failing
to manage in-storage resources such as device compute and
memory or handle multi-tenancy.

We envision an ideal near-storage design that co-designs
and combines storage management and data processing by
rethinking I/O abstractions to reduce dominant I/O overheads,
such as system calls, data and metadata movement, and host to
device communication latency. Importantly, the design must
ensure (storage) correctness, handle crash consistency, and
achieve fairness across tenants.

Therefore, We propose FusionFS, a near-storage file sys-
tem design to exploit device compute and memory resources
for reducing dominant I/O overheads and improving appli-
cation performance. FusionFS achieves these goals through
four main principles. First, FusionFS co-designs in-storage
management and data processing to eliminate dominating I/O
overheads. Second, designs abstractions to reduce host and
device interactions. Third, FusionFS exploits in-storage com-

*The authors contribute equally to this paper.

Thread 2 (File2 -> fd2)
Op3 write(fd2, buf, size=1K)
Op4 close(fd2)

Thread 1 (File1 -> fd1)
Op1* append-checksum-write(fd1, buf, size=4K)
Op2+ read-modify-write(fd1, buf, offset=30, size=4K) Application

OS Component

- Allocate DMA’able I/O
command queue

- Generate Credential info

UserLib

Converting POSIX I/O
syscalls to CISC I/O opsPer-inode

I/O command
queues

File1

Op1*

Op2+

Op3

Op4

File2

I/O op AutoMerge}

StorageFSFine-grained Journaling and Auto Recovery Compute Engine

I/O queue schedulerCredential Table

Figure 1: FusionFS High-level Design. Figure shows the high-
level design of FusionFS with the UserLib, the StorageFS, and the OS com-
ponents. For thread1, Op1 and Op2 show a CISCOp with data processing,
whereas Op3 and Op4 show simple I/O. StorageFS shows the in-device struc-
ture with durability, permission, and scheduling components.

pute for fine-grained crash consistency and faster recovery.
Fourth, FusionFS manages in-storage resources for fairness
and performance efficiency across tenants (Full version of
FusionFS appeared at FAST 2022 and the code is available at
[8]).

Overview. We design FusionFS as a disaggregated I/O stack
with direct-I/O that splits the file system into the host-level
user-level library (UserLib) and in-storage (StorageFS) com-
ponents that work in tandem to offload I/O and computation
without compromising correctness, crash consistency, recov-
ery, security, and resource fairness (see Figure 1). Applica-
tions either issue traditional POSIX I/O requests or CISCOps
to a DMA’able inode-queue, which are then processed by
StorageFS by checking the permission for each I/O request
and scheduling them for processing, in addition to fine-grained
durability and recovery.

CISCOps. Exploiting the in-storage capabilities requires re-
ducing frequent interaction between the host and device to re-
duce software and hardware overheads. Therefore, we take in-
spiration from seminal RISC (reduced instruction set comput-
ers) and CISC (complex instruction set computers) processor
design and apply it for I/O to either offload simple RISC-styled
operations (e.g., read, write, open) or CISC-styled CISCOps.
CISCOps extends the NVMe interface to aggregate I/O and
data processing sequences to significantly reduce dominant
overheads (system calls, data movement, and device and host
communication costs). While seemingly simple, unlike tradi-
tional vector I/O (e.g., writev, readv), CISCOps composes het-
erogeneous I/O and data processing operations, which raises
new challenges. We discuss the principles of composing CIS-
COps followed by challenges of realizing CISCOps.

Principle 1: CISCOps for Identical and Non-identical I/O
Operations: We observe that I/O operations are executed in
sequence or pairs in several applications. For example, Fig-
ure 2(a) shows a widely-used NoSQL database and webserver
sequence that opens, writes, syncs, and closes the file when in-
serting values (i.e., open()->write()->sync()->close()) or when
reading data [1]. The figure also shows overheads for each
operation, which includes data movement and system call
costs. We observe several such sequences contributing to I/O
overheads [8]. In contrast, CISCOps aggregates and offloads
such sequences to StorageFS reducing I/O overheads.

1

(a). Sequence using Block-based and NVM filesystem

open
(f1)

Block-based OS Filesystem

read
(f1, data)

write
(f1, data)

close
(f1)

append
(f1, data)

CRC
(data)

write
(f1, data)

M+S D+S M+D+S S M+D+S M+D+S

M

C

D

C C

M+D M+D M+D

C C

OS

Disk

open-read-write-close
(f1, data)

CSD

append-CRC-write
(f1, data)

C+D C+D

Cà I/O interface communication cost; M à metadata movement cost; Dà data movement cost; Sà system call

open
(f1)

read
(f1, data)

write
(f1, data)

close
(f1)

append
(f1, data)

CRC
(data)

write
(f1, data)

S S S

M

C

D

C

M+D M+D

C

S

C

S

C

S

M+D

NVM-based OS Filesystem

(b). Sequence using FusionFS

Figure 2: Comparison of I/O Overheads. (a) and (b) compare
data movement (D), communication cost (C), and system call (S) using tradi-
tional storage and envisioned CISCOps design that bypasses OS);

Principle 2: CISCOps for I/O and Data Processing Opera-
tions. For I/O and data processing inside CSDs, unlike prior
approaches that require significant application changes [2],
we focus on organically supporting I/O and their related pre
and post-processing to reduce I/O overheads. Specifically,
we observe that applications (e.g., NoSQL key-value stores)
frequently fetch I/O data to perform operations like check-
sum generation (CRC) to prevent the propagation of cor-
rupted data by adding CRC for integrity check, compres-
sion/decompression, encryption, search, sort, and ML opera-
tion pairs (e.g., XOR, multiplication). For example, with CRC,
after each file system append() system call, the CRC is com-
puted and appended to the actual data. CISCOps provides a ca-
pability to combine these operations into append-CRC-write
CISCOps and offload to StorageFS, thereby requiring just one
data movement without system call cost (see Figure 2).
Application Support. With the explicit approach, applica-
tions can use CISCOps pre-constructed by UserLib or con-
struct custom CISCOps. Each CISCOp is a vector of commands
in an extended NVMe format for supporting multiple opera-
tions and added to inode-queue for processing. The number
of elements in the CISCOp is configurable, and by default, can
pack 32 operations to fit in a DMA-able page.
Fine-grained Crash-Consistency and Fast Recovery. Be-
yond supporting journaling for basic file system operations
inside StorageFS, FusionFS must support crash consistency
and recovery for I/O and data processing operations in a
CISCOps. Challenges arise in terms of granularity and the
benefits of exploiting in-storage compute to accelerate recov-
ery. To address the challenges, we explore macro-transactions
(MacroTx) and micro-transactions (MicroTx). MacroTx uses
an all-or-nothing approach that only commits and recovers an
entire CISCOp including the data processing state, whereas
MicroTx supports crash consistency of partially committed
CISCOps. Further, to reap the benefits of MicroTx, we go a
step beyond current filesystems and use in-storage compute
to support operational logging and automatic recovery by fin-
ishing partially completed CISCOps.

2 Evaluation
To understand the benefits and implications of reducing

dominating I/O overheads like kernel/userspace crossing, data
movement cost, and communication cost between host and
device, we study the performance of state-of-the-art file sys-
tems designs with two benchmark workloads: (1) append-
CRC-write and (2) read-modify-write. These operations are
commonly used in key-value stores, databases, and several
other applications [8].

Due to the lack of programmable CSD, we carefully em-

1 4 8 16
0

1

2

3

4

of threads

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

0
.2

6

0
.2

7

0
.2

1

ext4-DAX

NOVA

SplitFS

CrossFS

FusionFS

CrossFS-slow-device-cpu

FusionFS-slow-device-cpu

(a) Append-CRC-Write

1 4 8 16
0

1

2

3

4

of threads

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

0
.3

3

0
.3

5

0
.2

5

(b) Read-Modify-Write

Figure 3: Microbenchmark. Shows aggregated throughput.
CrossFS and FusionFS use 4 device cores.

ulate our FusionFS on a 64-core dual-socket server with 96GB
DRAM and 256GB Optane DC NVM for storage. For StorageFS
processing, we reserve 4 CPUs. We also study the impact of
varying CPU speeds using fast (2.7GHz and default) and slow
(1.2GHz) CPUs resembling ARM-based CSDs. For device-
RAM, we reserve 2 GB memory managed by StorageFS. We
study the impact of device-RAM bandwidth using a 64-core
CloudLab machine. For PCIe latency, we add 900ns [5] delay
before a request is processed.

In Figure 3, we vary the number of benchmark threads
in the x-axis, and the y-axis shows the throughput, and the
threads use separate files. We compare ext4-DAX and NOVA
(kernel file systems), SplitFS (hybrid user-level file system),
CrossFS (in-storage file system), and FusionFS. Additionally,
to understand the impact of slower device-CPUs, we also
evaluate in-storage StorageFS to use 1.2GHz device-CPUs
(CrossFS-slow-device-cpu and FusionFS-slow-device-cpu).

First, kernel-level ext4-DAX and NOVA provides direct
access without data copies to page cache but incurs significant
system call and data copy cost. Next, hybrid user-level SplitFS
memory-maps storage to userspace and replaces reads/writes
with loads/store operations. SplitFS reduces system calls, but
metadata updates require frequent OS interaction. Further,
CrossFS, an emulated firmware-level file system design, re-
duces system calls and only metadata movement between
filesystem and storage, resulting in higher performance.

In contrast, FusionFS’s CISCOps design avoids system calls,
reduces a data copy between the application and the OS, and
the PCIe latency, all leading to up to 4.58X gains over state-
of-the-art file systems. Further, real-world applications like
Snappy and LevelDB show up to 1.63X and 2.1X gains (not
shown due to space constraints, please see [8]).

References
[1] Google LevelDB . http://tinyurl.com/osqd7c8.
[2] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu,

Linqiang Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu,
Feng Zhu, and Tong Zhang. POLARDB Meets Computational Storage:
Efficiently Support Analytical Workloads in Cloud-Native Relational
Database. In FAST ’20.

[3] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. SplitFS: Reducing Software
Overhead in File Systems for Persistent Memory. In SOSP ’19.

[4] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, Yuangang Wang, Jun Xu, and Gopinath Palani. Designing
a True Direct-access File System with DevFS. In FAST ’18.

[5] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. Understanding PCIe
Performance for End Host Networking. In SIGCOMM ’18.

[6] Yujie Ren, Changwoo Min, and Sudarsun Kannan. Crossfs: A cross-
layered direct-access file system. In OSDI ’20.

[7] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing In-
Storage Computing System for Emerging High-Performance Drivei. In
ATC ’19.

[8] Jian Zhang, Yujie Ren, and Sudarsun Kannan. FusionFS: Fusing I/O
operations using CISCOps in firmware file systems. In FAST ’22.

2

http://tinyurl.com/osqd7c8

	Introduction
	Evaluation

