
LeaFTL: A Learning-based Flash Translation Layer for Solid-State Drives*

Jinghan Sun§ Shaobo Li§ Yunxin Sun† Chao Sun‡ Dejan Vucinic‡ Jian Huang§

§ University of Illinois at Urbana-Champaign †ETH Zurich ‡Western Digital Research

Abstract

In modern solid-state drives (SSDs), the indexing of �ash pages
is a critical component in their storage controllers. It not
only a�ects the data access performance, but also determines
the e�ciency of the precious in-device DRAM resource. A
variety of address mapping schemes and optimizations have
been proposed. However, most of them were developed with
human-driven heuristics.

In this paper, we present a learning-based �ash translation
layer (FTL), named LeaFTL, which learns the address mapping
to tolerate dynamic data access patterns via linear regression
at runtime. By grouping a large set of mapping entries into
a learned segment, it signi�cantly reduces the memory foot-
print of the address mapping table, which further bene�ts the
data caching in SSD controllers. LeaFTL also employs vari-
ous optimization techniques, including out-of-band metadata
veri�cation to tolerate mispredictions, optimized �ash alloca-
tion, and dynamic compaction of learned index segments. We
implement LeaFTL with both a validated SSD simulator and
a real open-channel SSD board. Our evaluation with various
storage workloads demonstrates that LeaFTL saves the mem-
ory consumption of the mapping table by 2.9× and improves
the storage performance by 1.4× on average, in comparison
with state-of-the-art FTL schemes.

1 Background and Motivation

Flash-based SSDs have become an indispensable part of mod-
ern storage systems, as they outperform conventional hard-
disk drives (HDDs) by orders of magnitude, and their cost is
close to that of HDDs. The SSD capacity continues to boost
by increasing the number of �ash channels and chips with the
rapidly shrinking process and manufacturing technology.

The �ash translation layer (FTL) is the core component of
managing �ash in SSDs, which handles address translation,
garbage collection (GC), and wear leveling. The FTL also main-
tains metadata structures for di�erent functionalities, such as
address translation and valid page tracking, and caches them in
the in-device DRAM (SSD DRAM) for improved performance.

Among these data structures, the address mapping table has
the largest memory footprint. There are three types of address
mapping table: page-level mapping, block-level mapping, and
hybrid mapping. Modern SSDs usually use page-level map-
ping, as it o�ers the best performance for address translation
and incurs minimal GC overhead. However, the page-level
mapping scheme has the largest mapping table size, as it stores
LPA-to-PPA address translation for each �ash page.

The address mapping table signi�cantly a�ects the perfor-
mance of SSDs, as it not only determines the e�ciency of
indexing �ash pages, but also a�ects the utilization of SSD
DRAM. Moreover, due to the limitations of the cost and power
budget in SSD controllers, it is challenging for SSD vendors to
scale the in-device DRAM capacity. This challenge becomes

*This work has been published at ASPLOS 2023 [4].

(b) Inaccurate Linear Approximation (a) Precise Linear Approximation

Figure 1: Visualization of learned index segments.

even worse with the increasing �ash memory capacity in an
SSD, as larger capacity usually requires a larger address map-
ping table for indexing.

To improve the address mapping for SSDs, various optimiza-
tion schemes have been developed. However, most of them
were developed based on human-driven heuristics, and can-
not capture dynamic data access patterns at runtime. In this
work, we focus on utilizing simple yet e�ective machine learn-
ing (ML) techniques to automate the address mapping table
management in the SSDs, with the capability of learning di-
verse and dynamic data access patterns to reduce the memory
footprint and improve SSD DRAM utilization.

2 Design and Implementation

Key Ideas of LeaFTL. To reduce the large memory footprint
of the page-level mapping scheme, LeaFTL uses piecewise lin-
ear regression to identify various LPA-PPA mapping patterns
and group them into learned index segments (see Figure 1 (a)).
Each learned index segment can be simply represented with
((!%�, !, , �), where [(!%�, (!%� + !] denotes the interval of
LPAs, is the slope of the segment, and � is the intercept of the
segment, and each of segments takes only 8 bytes (1 byte for
(!%� and !, 2 bytes for , and 4 bytes for �). Compared to the
page-level mapping scheme, LeaFTL reduces the mapping table
size by a factor of< ∗ 0E6(!)/8, where< is the size (usually
8 bytes) of each entry in the on-demand page-level mapping
table, and 0E6(!) is the average number of LPA-PPA mappings
that can be represented in a segment. We show that 0E6(!) is
20.3, according to our study of various storage workloads [4].

LeaFTL can relax the linear regression to capture more �ash
access patterns. As shown in Figure 1 (b), it can learn a mapping
pattern with guaranteed error bound [-W , W] and create an
approximate index segment. Upon creation of an approximate
segment, LeaFTL uses a Con�ict Resolution Bu�er (CRB) to
store its indexed LPAs. CRB helps LeaFTL check whether a
given LPA belongs to the approximate segment.
Improving the Learning E�ciency. Flash pages are
bu�ered in SSD controllers and �ushed to the �ash chips at
a �ash block granularity. This allows LeaFTL to learn more
space-e�cient index segments by reordering the �ash pages
in the data bu�er in ascending order of their LPAs. It ensures
a monotonic address mapping between LPAs and PPAs, which
reduces the number of learned index segments and further
saves memory space.
Managing Learned Index Segments. The direct updates to
learned index segments are expensive since we have to relearn

Level 0

Level 1

0 63 100 200 230 255

16 127 206 240

non-overlapping
at each level

segments can overlap
across levels

Figure 2: The learned index segments are managed in a log-
structured manner in LeaFTL.
the index segments with new PPAs. This relearning procedure
not only breaks the existing LPA-to-PPA mapping patterns
but also involves additional �ash accesses. To address this
issue, LeaFTL manages the learned index segments in a log-
structured manner, as shown in Figure 2. Therefore, the newly
learned index segments will be appended to the log structure,
while the existing learned segments can still serve address
translations for LPAs whose mappings have not been updated.

LeaFTL supports the following operations: (1) Segment Cre-
ation: Once the data bu�er is �lled, LeaFTL takes the LPAs and
PPAs of the �ash pages in the bu�er as the input, sorts the LPA-
PPA mappings and uses greedy piecewise linear regression to
learn the index segment; (2) Segment Update: LeaFTL places
the newly learned segment in the topmost level of the log-
structured mapping table and inserts its indexed LPAs into the
CRB. If any existing segment has overlapping LPA ranges with
the inserted segment, LeaFTL merges them by invalidating the
outdated LPAs of the existing segment. The existing segment
will be moved to the next level if the overlap still exists; (3)
LPA Lookup: For a given LPA, LeaFTL conducts a binary search
from the topmost level of the log-structured mapping table. If
LPA is indexed by a learned segment, LeaFTL uses the formula
%%� = 5 (!%�) = d ∗ !%� + �e, !%� ∈ [(!%�, (!%� + !] to
obtain the PPA. Otherwise, LeaFTL continues to search for
the next level. When the segment is approximate, LeaFTL also
checks the reverse mapping in the out-of-band (OOB) metadata
of each �ash page to check the correctness of the predicted
PPA; (4) Segment Compaction: To save more memory space,
LeaFTL periodically triggers segment compaction by merging
segments with overlapping LPA ranges and removing their
outdated CRB entries.
Handling Address Misprediction. LeaFTL uses the out-of-
band (OOB) metadata of each �ash page to verify the cor-
rectness of the translation. LeaFTL stores the reverse map-
pings of its neighbor PPAs in the OOB metadata. Since with a
%%�;40A=43 obtained from an approximate segment, its error
bound [−W,W] guarantees that the correct PPA is in the range
of [%%�;40A=43 −W, %%�;40A=43 +W]. Thus, upon a misprediction,
LeaFTL will read the �ash page with %%�;40A=43 , and use its
OOB to �nd the correct PPA with only one extra �ash access.
Preserving Other Core FTL Functions. LeaFTL preserves
the core functions such as GC and wear leveling. It follows the
same GC and wear leveling policies in modern SSDs. When
the number of free blocks in an SSD is below a threshold, the
SSD controller will trigger the GC execution, which greedily
selects the candidate blocks with a minimal number of valid
pages and move the valid pages to the free blocks. LeaFTL
updates the address mapping by placing these valid pages into
the DRAM bu�er, sorting them by their LPAs, and learning
new index segments. LeaFTL ensures wear leveling by using
the throttling and swapping mechanism developed in existing
GC and updating address mappings for migrated blocks.
Key Contributions. We make the following contributions:
• We present a learning-based FTL, which can learn various

MSR-hm
MSR-src2

MSR-prxy
MSR-prn

MSR-usr
FIU-home

FIU-mail

50x
20x
10x

5x
2x
1x

M
em

or
y

Fo
ot

pr
in

t
R

ed
uc

tio
n

DFTL SFTL LeaFTL

Figure 3: The reduction on the mapping table size of LeaFTL,
in comparison with DFTL and SFTL.

MSR-hm
MSR-src2

MSR-prxy
MSR-prn

MSR-usr
FIU-home

FIU-mail
0.0

0.5

1.0

N
or

m
al

iz
ed

 P
er

f.

DFTL SFTL LeaFTL

Figure 4: SSD performance when using its DRAM mainly for
the address mapping table (lower is better).

data access patterns and turn them into index segments for
reducing the storage cost of the mapping table.

• We develop an error-tolerant address translation mechanism
to handle address mispredictions caused by the learned in-
dexes, with minimal extra �ash accesses.

• We preserve the core FTL functions and enable the coordina-
tion between the learning procedure of the address mapping
table with the �ash block allocation and GC to maximize the
e�ciency of the learned FTL.

• We manage the learned segments in an optimized log-
structured manner and enable compaction to further im-
prove the space e�ciency for the address mapping.

LeaFTL Implementation. We implement LeaFTL based on
a validated trace-driven simulator WiscSim [2] and develop a
real system prototype with an open-channel SSD.

3 Evaluation

We evaluate the bene�ts of LeaFTL with various workloads,
such as enterprise server workloads from Microsoft Research
Cambridge [3], academic computer workloads from FIU [1],
and data-intensive applications.

Our evaluation shows that (1) LeaFTL reduces the map-
ping table size by 7.5–37.7×, compared to the page-level map-
ping scheme DFTL (see Figure 3); (2) LeaFTL improves the
storage performance by 1.4× on average, compared to SFTL
(see Figure 4); (3) LeaFTL achieves additional memory savings
and performance bene�ts with a larger error-tolerance, and it
demonstrates generality for di�erent SSD con�guration. We
presented the detailed evaluation in [4].

References
[1] FIU, “Fiu server traces.” http://iotta.snia.org/traces/block-io/390, 2009.
[2] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau, “The Unwritten Contract of Solid State Drives,” in the Twelfth
European Conference on Computer Systems (EuroSys’17), April 2017.

[3] Microsoft, “Msr cambridge traces.” http://iotta.snia.org/traces/block-io/
388, 2007.

[4] J. Sun, S. Li, Y. Sun, C. Sun, D. Vucinic, and J. Huang, “LeaFTL: A learning-
based �ash translation layer for solid-state drives,” in Proceedings of the
28th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’23), ACM, Mar. 2023.

http://iotta.snia.org/traces/block-io/390
http://iotta.snia.org/traces/block-io/388
http://iotta.snia.org/traces/block-io/388

	Background and Motivation
	Design and Implementation
	Evaluation

