
Yashme: Detecting Persistency Race

Hamed Gorjiara
University of California, Irvine

Guoqing Harry Xu
University of California, Los Angeles

Brian Demsky
University of California, Irvine

1. Introduction
Failures are a key challenge in redesigning systems to use per-
sistent memory. We present a new class of persistent memory
bugs that we call persistency races. Persistency races stem
from the fact that most programming language specifications
provide compilers with the freedom to assume that non-atomic
stores do not participate in data races. This means that com-
pilers can perform optimizations that assume that the stored
locations are not accessed concurrently by other threads. Such
optimizations include implementing a non-atomic store with
multiple store instructions. This is often referred to as store
tearing. For example, given an architecture having 16-bit
store instructions with immediate fields, the compiler might
be tempted to use two 16-bit store-immediate instructions to
implement a 32-bit store. Although it is rare that compilers
introduce these optimizations, it is enough of a concern that
both PMDK developers and the Linux Kernel developers
take care to avoid it. Indeed, the Linux kernel mailing list
provides a number of examples [3] of modern compilers tear-
ing non-atomic stores even when they are aligned, word-length
stores. Compilers can also introduce store tearing via other
optimizations. Mainstream compilers commonly rewrite code
that copies or initializes several contiguous fields into calls
to the libc functions memcpy, memmove, or memset. These opti-
mizations are very common in practice. These functions do
not guarantee 64-bit atomicity and can hence result in store
tearing. Crashes in persistent memory systems can make the
effects of these optimizations visible. For example, store tear-
ing creates the possibility that a poorly timed crash can cause
non-atomic stores to be made partially persistent. A post-crash
execution can then potentially read values that mix bytes from
multiple different store operations. This could, for example,
cause a post-crash execution to read an invalid array index,
leading to further corruption.

Persistency races are similar in spirit to data races because
both persistency races and data races violate assumptions made
by compilers and thus can break the abstraction of a language-
level store writing the specified value to memory. However,
there are important fundamental differences between the two
as each persistency race involves three distinct events: (1) the
racing store in the pre-crash execution, (2) the crash event
against which the store races, and (3) a race-observing load
in the post-crash execution that observes the effects of the
race. Although persistency races may not manifest under a
particular compiler/architecture, they can lead to bugs that are
extremely difficult to detect during development and testing
(e.g., exposing persistency race due to compiler update).

Most existing PM bug finding tools use techniques that

fundamentally cannot detect persistency races because they
just validate that stores are flushed or performed in a spe-
cific order. Only model checking tools could conceptually be
adapted to find persistency races by splitting the stores into
single byte stores at the cost of an exponential increase in the
number of executions that must be explored. However, if these
frameworks explore the correct execution, they can potentially
observe a crash caused by a persistency race.

2. Yashme

We implemented a tool [4], Yashme, to detect persistency
races. Yashme’s basic approach is to simulate the execution of
a PM program, inject a crash, and then simulate the execution
of the post-crash recovery program. During the post-crash
execution, we compute which stores may have persisted in-
correct values due to the crash. There are two ways that PM
program executions can ensure that stores are fully persisted:
(1) the execution explicitly flushes the cache line after the
store writes to the cache line and before the crash or (2) the
post-crash execution reads from a later atomic store to the
same cache line and relies on cache coherence to ensure the
persistency of the store.

Figure 1 presents an example where the pre-crash execution
stores x=1, and then persists it by executing a clflush instruc-
tion. To ensure persistency, it is critical that the store happens
before the clflush instruction. This execution does not expose
a persistency race because x=1 has been flushed before the
crash.

x=1 clflush(x)

pre-crash
execution

rd(x)

post-crash
execution

CRASH!

hb

Figure 1: Example of using
clflush to flush the store to
x.

Cache coherence proto-
cols ensure a total order in
the persistence of stores to
the same cache line. Fig-
ure 2(a) provides an exam-
ple of an execution that
uses cache coherence to
avoid a persistency race.
We use the notation yrel=1

to indicate that the store of
1 to y is an atomic release store. Assume that the variables x
and y reside on the same cache line. In the pre-crash execution,
the store to x happens before the store to y. Cache coherence
protocols guarantee x=1 is completely written to the cache line
before yrel=1 even if store to x is torn into multiple store oper-
ations. Since the post-crash execution observes the store to y,
the cache line is flushed sometime after persisting yrel=1 and
before the crash event. Consequently, the post-crash execution
must also observe the fully completed store to x due to cache
coherence. Thus, there is no persistency race in this execution.



x=1 yrel=1

pre-crash
execution

rd(y)

post-crash
execution

CRASH!

hb

rd(x)hb

x=1 clflush(x)

window for detecting 
persistency racepre-crash

execution

rd(x)

post-crash
execution

CRASH!

(a) (b)

Figure 2: (a) Example of coherence preventing persistency
races. Variables x and y reside on the same cache line and
that the store to y is an atomic release store. (b) Crash misses
window for detecting persistency race using core algorithm.

2.1. Key Idea: Expanding the Detection Window

The two approaches mentioned above can only detect persis-
tency races involving stores in a small window of the pre-crash
execution. Figure 2(b) shows an example crash scenario to
illustrate this problem. In this example, the pre-crash exe-
cution writes to x, flushes the write, and then crashes. The
post-crash execution then reads from x. Since the crash occurs
after the write is flushed, the approach misses detecting the
persistency race in this program. To detect this persistency
race, the program must crash in the small window of time be-
tween the store to x and the corresponding flush. This implies
that detecting races using the basic approaches would require
injecting crashes in a large number of executions, which can
be prohibitively expensive for large programs.

x=1 clflush(x)

window
for detecting
persistency racepre-crash

execution

rd(x)

post-crash
execution

Consistent crash interval

x=1

clflush(x)

window for 
detecting
persistency race

pre-crash
execution

rd(x)

post-crash
execution

Consistent 
crash interval

rd(y)hb

yrel=1

(a) (b)

Figure 3: (a) Prefixes of pre-crash execution that are consis-
tent with the post-crash execution (b) Prefixes of pre-crash
execution that are consistent with the post-crash execution
after reading from y residing on the same cache line as x.

Our key insight for effectively detecting persistency races
is that we can check whether the post-crash execution E ′ has a
persistency race with any prefix E+ of the pre-crash execution
E that is consistent with E ′. Figure 3(a) illustrates this insight.
While the pre-crash execution has flushed the store to x, the
post-crash execution has not read from any store that happens
after the cache line flush. Thus the post-crash execution at this
point is consistent with any prefix of the pre-crash execution
starting at the store that writes 1 to x. The blue arrow shows
the range of consistent prefixes of the pre-crash execution.
In Figure 3(b), as the post-crash execution reads from the

atomic variable y, Yashme updates the constraint of pre-crash
execution to be consistent with the post-crash execution and
to include the clflush(x) instruction.
Consistent Prefixes. Intuitively, a consistent prefix of the pre-
crash execution must contain any statement which happens
before a pre-crash store that the post-crash execution reads
from. Yashme tracks every pre-crash store that the post-crash
executions reads from and computes the shortest consistent
prefix by using clock-vector-based techniques that are com-
monly used by race detectors. Yashme uses the consistent
prefix to determine whether there is a prefix of the pre-crash
execution that did not execute a given clflush. If so, Yashme
ignores the instruction when checking for races, because there
is a pre-crash execution that does not execute the instruction
and yields the same post-crash execution.

3. Evaluation
We have evaluated Yashme on a collection of persistent
data structures including the RECIPE benchmarks [7],
FAST_FAIR [5], and CCEH [8] in its model checking
mode. We tested Yashme on real-world frameworks including
PMDK [1], Memcached [2], and Redis [6] in random mode.
For each of these benchmarks, we used example programs
manipulate data store through standard insertion, deletion, and
lookup operations. Yashme has found 24 persistency races in
these benchmarks that are all new and have not been discov-
ered by prior tools. Most of these bugs are confirmed by the
developers of these tools. To fix these bugs, the developers
need to replace racing non-atomic stores with atomic ones

To evaluate the importance of searching for persistency
races in prefixes of available executions, we ran Yashme with
and without this optimization to compare their bug finding
capabilities. Yashme finds 5× more persistency races with the
prefix optimization.

References
[1] Intel Corporation. Persistent memory development kit. https://pmem.

io/pmdk/, 2020.
[2] Inc. Danga Interactive. Memcached. https://github.com/lenovo/

memcached-pmem, November 2018.
[3] Will Deacon. Re: [patch 1/1] fix: trace sched switch start/stop

racy updates. https://lore.kernel.org/lkml/20190821103200.
kpufwtviqhpbuv2n@willie-the-truck/, August 2019.

[4] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Yashme:
Detecting persistency races. https://doi.org/10.1145/3503222.
3507766, ASPLOS 2022.

[5] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
Endurable transient inconsistency in byte-addressable persistent B+-
Tree. In Proceedings of the 16th USENIX Conference on File and
Storage Technologies, FAST ’18, pages 187–200, USA, 2018. USENIX
Association.

[6] Redis Labs. Redis. https://github.com/pmem/redis, August
2020.

[7] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. Recipe: Converting concurrent DRAM indexes to
persistent-memory indexes. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pages 462–477, New York,
NY, USA, 2019. Association for Computing Machinery.

[8] Moohyeon Nam, Hokeun Cha, Young-Ri Choi, Sam H. Noh, and Beom-
seok Nam. Write-optimized dynamic hashing for persistent memory. In
Proceedings of the 17th USENIX Conference on File and Storage Tech-
nologies, FAST ’19, pages 31–44, USA, 2019. USENIX Association.

2

https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://github.com/lenovo/memcached-pmem
https://github.com/lenovo/memcached-pmem
https://lore.kernel.org/lkml/20190821103200.kpufwtviqhpbuv2n@willie-the-truck/
https://lore.kernel.org/lkml/20190821103200.kpufwtviqhpbuv2n@willie-the-truck/
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/3503222.3507766
https://github.com/pmem/redis

	Introduction
	Yashme
	Key Idea: Expanding the Detection Window

	Evaluation

