
ReplayCache: Enabling Volatile Caches for Energy Harvesting
Systems

Jianping Zeng
Purdue University

Jongouk Choi
Purdue University

Xinwei Fu
Virginia Tech

Ajay P. Shreepathi
Stony Brook University

Dongyoon Lee
Stony Brook University

Changwoo Min
Virginia Tech

Changhee Jung
Purdue University

1 INTRODUCTION
Energy harvesting systems have been deployed in a wide range of
application domains thank to the ability to collect necessary energy
from variant ambient sources—e.g., solar, thermal, and frequency
radiation—and are now considered to be an enabling technology
for wearables and other tiny IoT devices.

However, due to the batteryless nature, energy harvesting sys-
tems suffer unpredictable frequent power failure and thus require
some form of crash consistency. Thus, existing systems have been
designedwith byte-addressable non-volatile memory (NVM), where
data are immediately persisted and thus recoverable at the cost of
long latency. While volatile write-back caches can hide the store
latency and improve performance with a load hit exploiting data
locality, they have been assumed to be not viable or at least chal-
lenging in energy harvesting systems.

The crux of the problem is that volatile write-back cache states
are not preserved across a power outage. This may lead to an incon-
sistent NVM state, and therefore the power-interrupted program
may fail to resume correctly. That is why existing energy harvesting
systems do not use volatile data caches; prior work uses a read-only
NVM-based instruction cache where crash consistency (without
stores) is not an issue. Unfortunately, it is a challenging problem to
ensure correct data cache persistence in a lightweight manner to
maintain forward progress. For example, software logging causes
serious performance degradation (100-300 % slowdown) since each
regular store is preceded by the persistence barrier.

One possible hardware solution is to use a volatile write-through
cache. It allows energy harvesting systems to benefit from load hits
and to ensure crash consistency by enforcing that the completion
of a store instruction guarantees the persistence of the data in
NVM. However, write-through cache comes with a performance
penalty on each store as conventional cache-free energy harvesting
processors. Since they use a simple in-order core without any form
of speculation, they cannot hide the data persistence latency.

Alternatively, one can design a persistent write-back data cache,
e.g., non-volatile cache (NVCache) and non-volatile SRAM cache
(NVSRAMCache). However, both cache designs have their own
problems. Due to the NVM-based design, NVCaches incur high la-
tency and power consumption for each access. NVSRAMCaches em-
bed NVM to backup a SRAM-based cache, and checkpoint/restore
the entire SRAM to/from the NVM backup across power failure,
leading to high energy consumption. While NVSRAMCaches may
be as fast as a volatile SRAM cache without power failure, it is
hard to maintain the performance with frequent failure—i.e., the
norm of energy harvesting—unless they use a lower-power yet fast
non-volatile technology which has not been commercialized yet.

With that in mind, we propose ReplayCache, a software-only
scheme that enables commodity energy harvesting systems to ex-
ploit a volatile write-back data cache for performance, yet ensures
lightweight crash consistency of the NVM state for correctness.
ReplayCache does not ensure the persistence of dirty cachelines or
record their logs at run time; i.e., no write amplification. Instead,
ReplayCache replays the potentially unpersisted stores in the wake
of power failure to restore the consistent NVM state from which
the interrupted program can safely resume.

To realize the store replay, ReplayCache partitions program into
a series of regions so that the operand registers of store instructions
are intact (i.e., not overwritten by the other following instructions)
in each region. We refer to this process store-register-preserving
region formation. Then, at run time, ReplayCache checkpoints
all registers just before power failure to secure the store operand
registers. We note that the just-in-time register checkpointing is
already available in energy harvesting systems. During recovery,
these checkpointed registers are used to re-execute the stores along
the same program path as the one before the power failure; for the
store replay, a recovery code block is generated for each region,
i.e., ReplayCache directs program control to the recovery code in
the wake of the power failure. After that, ReplayCache can safely
resume from the interrupted program point with the checkpointed
registers and the recovered consistent NVM.

2 PROGRAM REGION PARTITIONING
As shown in Figure 1(a), ReplayCache compiler partitions entire
program input to a series of regions. Each region guarantees that
the operand registers (e.g., address, value) of stores therein are not
overwritten by any other succeeding instructions in that region.

3 REGION-LEVEL PERSISTENCE
To achieve high performance, ReplayCache does not rely on any
logging for each store. Instead, ReplayCache asynchronously writes
back the stored values to the NVM, and overlaps the write-back
operations with the executions of other following instructions,
effectively exploiting instruction-level parallelism (ILP).

Unlike a traditional write-back cache, ReplayCache ensures that
all the stores in a region are persisted (written back to the NVM)
before the region ends; this paper calls this region-level persistence
in which the persistence latency of in-region stores can be naturally
hidden by ILP; Figure 1(b) illustrates the window of potential ILP
gain, and the unpersisted state of each store. This region-level
persistence assures that at the moment of a power outage, all the
stores in the preceding program regions have already been persisted,

This paper [5] appears in MICRO’21 initially, Virtual, Greece Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay P. Shreepathi, Dongyoon Lee, Changwoo Min, and Changhee Jung

NVFF
Regs

NVFF
Regs

original
program

region-
partitioned

Compiler

asynchronous write-back
exploiting ILP

power
failure

NVM
X=0

ckpt

potentially
inconsistent

NVM
X=1 re-execute

stores W(X)=1
in recovery code

recovered
consistent

restore

power
back onW(X)=1 W(Y)=1

region
boundary

(a) (b) (c)
W(X)=1

resumerecovery

1

2

3

other instructionsstores
clwb instructions memory fence

Figure 1: A high-level design of ReplayCache.

and only the stores in the interrupted region could potentially be
unpersisted.

The processor stalls if there exists an outstanding unpersisted
store at the end of a region, until it becomes persisted to the NVM.
ReplayCache compiler dedicates a single register (e.g., r12) to be
acted as region register to track the most recent region boundary
information for recovery code searching. That is, the register is
updated with a program counter at each region boundary.

4 JIT REGISTER CHECKPOINTING
Across a power outage, ReplayCache saves register states just be-
fore the outage and restores them in the wake of the outage using
the voltage monitor based JIT checkpointing mechanism in com-
modity energy harvesting systems. For instance, QuickRecall [2]
and NVP [4] can both checkpoint register states before the power
off and to restore them after the power on. In Figure 1(c), step 1
illustrates that ReplayCache checkpoints the registers when power
is about to be cut off.

5 RECOVERY PROTOCOL
To recover the program status from power failure, ReplayCache
compiler generates necessary data structure and per-region recov-
ery code blocks to facilitate recovery process. The recovery protocol
works as follows. Upon a power outage, the interrupted region’s
stores before the outage may or may not be persisted, e.g.,W (X) = 1
in Figure 1(c) unpersisted till the outage—while all preceding re-
gions’ stores are guaranteed to be persisted and thus consistent
(due to the region-level persistence). In the wake of the outage,
ReplayCache jumps to the recovery code block of the interrupted
region to replay all the stores left behind the outage. The recovery
code block re-executes such unpersisted stores using the check-
pointed register values in either nonvolatile flip-flop (NVP) or NVM
(QuickRecall). This is shown as a step 2 of Figure 1(c). Finally, the
recovery code sets off a restoration signal to restore all registers
(including PC) from nonvolatile flip-flop or NVM, and then resumes
the program from the outage point with the restored registers and
the recovered NVM states as in step 3 of Figure 1(c). In this way,
ReplayCache allows energy harvesting systems to seamlessly lever-
age a writeback data cache without amplifying NVM stores.

6 EVALUATION
We implement all ReplayCache compiler passes using the LLVM
compiler infrastructure [3] and evaluate ReplayCache on top of the
gem5 simulator [1] with ARM ISA. We simulate all the applications
of Mediabench and Mibench with a RF-based real power trace suf-
fering frequent power failures. As shown in Figure 2, ReplayCache

achieves an average 8.5X speedup over the baseline (original cache-
free NVP). Note that the performance of ReplayCache reaches 80%
of that of a hardware-expensive ideal NVSRAMCache NVP design.

adp
cm

dec
adp

cm
enc

g721dec
g721enc
gsm

dec
gsm

enc
jp

egdec
jp

egenc
m

p
eg2dec

m
p

eg2enc
p

egw
itdec

sha
susanc
susane
susans
geom

ean

basicm
ath

dijkstra
ff

t
iff

t
patricia
rijndaeldec
rijndaelenc
typ

eset
geom

ean
all

geom

0 0

10 10

20 20

30 30

40 40

#
N

or
m

al
iz

ed
sp

ee
du

p

Mediabench Mibench

41.4

NVSRAMCache ReplayCache

Figure 2: Performance results with RF-Office power trace
normalized to the baseline without a cache.

7 SUMMARY
This paper presents ReplayCache, a software-only scheme that en-
ables energy harvesting systems to take advantage of a volatile
data cache efficiently and correctly. To achieve crash consistency
with the volatile data cache, ReplayCache proposes a replay-based
solution that restores the operands of potentially unpersisted stores
from the register checkpoint and then re-executes them to restore
consistent non-volatile memory status. Experimental results show
that compared to the baseline with no cache, ReplayCache sig-
nificantly improves the performance by 8.5x on average, while
ensuring correct resumptions even in the presence of unpredictable
and frequent power outages.

REFERENCES
[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sar-
dashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture news
39, 2 (2011), 1–7.

[2] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QuickRecall: A
low overhead HW/SW approach for enabling computations across power cycles
in transiently powered computers. In 2014 27th International Conference on VLSI
Design and 2014 13th International Conference on Embedded Systems. IEEE, 330–335.

[3] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[4] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li,
Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2015. Archi-
tecture exploration for ambient energy harvesting nonvolatile processors. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 526–537.

[5] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongyoon
Lee, Changwoo Min, and Changhee Jung. 2021. ReplayCache: Enabling Volatile
Cachesfor Energy Harvesting Systems. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 170–182.

	1 Introduction
	2 Program Region Partitioning
	3 Region-level Persistence
	4 JIT Register Checkpointing
	5 Recovery Protocol
	6 Evaluation
	7 Summary
	References

