On the Capacity of DNA-based Data Storage under Substitution Errors

Andreas Lenz¹, Paul H. Siegel², Antonia Wachter-Zeh¹, Eitan Yaakobi³

¹Institute for Communications Engineering Technical University of Munich

²Department of Electrical and Computer Engineering University of California

³Computer Science Department, Technion Israel Institute of Technology UC San Diego

May 9th, 2022

Outline

Channel Model

• Related Work

• Preliminaries

• Channel Capacity

• Summary & Outlook

User Binary Data 000001101011001 110100010010101 101000111110100

X Draw & Distort

Y

$$Y_j = X_{I_j} + E_j$$

- I_j : i.i.d. uniform random draws
- E_j : random error vectors (error probability p)

$$Y_j = X_{I_j} + E_j$$

- I_j : i.i.d. uniform random draws
- E_j : random error vectors (error probability p)
- In this work: Quaternary sequences ($\mathbb{Z}_4 = \{A, C, G, T\}$)

Channel Input:

- *M* Sequences, each of length *L*
- $X = (X_1, \ldots, X_M)$

Channel Input:

- *M* Sequences, each of length *L*
- $X = (X_1, \ldots, X_M)$
- $\beta = \log_4 M/L$

Channel Input:

- *M* Sequences, each of length *L*
- $X = (X_1, \ldots, X_M)$
- $\beta = \log_4 M/L$

Channel Output:

- N sequences, each of length L
- $Y = (Y_1, \ldots, Y_N)$

Channel Input:

- *M* Sequences, each of length *L*
- $X = (X_1, \ldots, X_M)$
- $\beta = \log_4 M / L$

Channel Output:

- N sequences, each of length L
- $Y = (Y_1, \ldots, Y_N)$
- c = N/M

Communication System:

Message

W

Communication System:

Code:

- $\mathcal{C} = \{X(1), \dots, X(4^{MLR})\} \subset \mathbb{Z}_4^{M \times L}$
- Code rate $R = \frac{\log_4 |\mathcal{C}|}{ML}$

Communication System:

Code:

- $\mathcal{C} = \{X(1), \dots, X(4^{MLR})\} \subset \mathbb{Z}_4^{M \times L}$
- Code rate $R = \frac{\log_4 |\mathcal{C}|}{ML}$

Decoder:

- dec : $\mathbb{Z}_4^{N \times L} \mapsto \mathcal{C}$
- Error prob. $P(\operatorname{Err}) = P(\operatorname{dec}(Y) \neq X)$

Communication System:

Code:

•
$$\mathcal{C} = \{X(1), \dots, X(4^{MLR})\} \subset \mathbb{Z}_4^{M \times L}$$

• Code rate
$$R = \frac{\log_4 |\mathcal{C}|}{ML}$$

Decoder:

• dec :
$$\mathbb{Z}_4^{N \times L} \mapsto C$$

• Error prob. $P(\operatorname{Err}) = P(\operatorname{dec}(Y) \neq X)$

Channel Capacity

Achievable rates

Code rate R is achievable, if there exists a code C of rate R with $P(Err) \rightarrow 0$, as $ML \rightarrow \infty$

Communication System:

Code:

•
$$\mathcal{C} = \{X(1), \dots, X(4^{MLR})\} \subset \mathbb{Z}_4^{M \times L}$$

• Code rate
$$R = \frac{\log_4 |\mathcal{C}|}{ML}$$

Decoder:

• dec :
$$\mathbb{Z}_4^{N \times L} \mapsto C$$

• Error prob. $P(\operatorname{Err}) = P(\operatorname{dec}(Y) \neq X)$

Channel Capacity

Achievable rates

Code rate R is achievable, if there exists a code C of rate R with $P(Err) \rightarrow 0$, as $ML \rightarrow \infty$

• Capacity: Supremum of achievable rates

Related Work

[Mitzenmacher, "On the Theory and Practice of Data Recovery with Multiple Versions," 2006]

• Capacity of binomial/multi-draw channel

Related Work

[Mitzenmacher, "On the Theory and Practice of Data Recovery with Multiple Versions," 2006]

• Capacity of binomial/multi-draw channel

[Heckel et al., "Fundamental Limits of DNA Storage Systems," 2017]

• Introduced channel model with no errors p = 0
[Mitzenmacher, "On the Theory and Practice of Data Recovery with Multiple Versions," 2006]

• Capacity of binomial/multi-draw channel

[Heckel et al., "Fundamental Limits of DNA Storage Systems," 2017]

- Introduced channel model with no errors p = 0
- Computed capacity $C = (1 e^{-c})(1 \beta)$

[Mitzenmacher, "On the Theory and Practice of Data Recovery with Multiple Versions," 2006]

• Capacity of binomial/multi-draw channel

[Heckel et al., "Fundamental Limits of DNA Storage Systems," 2017]

- Introduced channel model with no errors p = 0
- Computed capacity $C = (1 e^{-c})(1 \beta)$

[Shomorony et al., "Capacity of the Noisy Shuffling Channel," 2019]

• Similar channel - each sequence is drawn exactly once with errors

[Mitzenmacher, "On the Theory and Practice of Data Recovery with Multiple Versions," 2006]

• Capacity of binomial/multi-draw channel

[Heckel et al., "Fundamental Limits of DNA Storage Systems," 2017]

- Introduced channel model with no errors p = 0
- Computed capacity $C = (1 e^{-c})(1 \beta)$

[Shomorony et al., "Capacity of the Noisy Shuffling Channel," 2019]

- Similar channel each sequence is drawn exactly once with errors
- Computed capacity $C = 1 H(p) \beta$

[Mitzenmacher, "On the Theory and Practice of Data Recovery with Multiple Versions," 2006]

• Capacity of binomial/multi-draw channel

[Heckel et al., "Fundamental Limits of DNA Storage Systems," 2017]

- Introduced channel model with no errors p = 0
- Computed capacity $C = (1 e^{-c})(1 \beta)$

[Shomorony et al., "Capacity of the Noisy Shuffling Channel," 2019]

- Similar channel each sequence is drawn exactly once with errors
- Computed capacity $C = 1 H(p) \beta$

[Shomorony et al., "DNA-based storage: Models and fundamental limits", 2021]

• Generalization to Bernoulli drawing distributions with success prob. q

[Mitzenmacher, "On the Theory and Practice of Data Recovery with Multiple Versions," 2006]

• Capacity of binomial/multi-draw channel

[Heckel et al., "Fundamental Limits of DNA Storage Systems," 2017]

- Introduced channel model with no errors p = 0
- Computed capacity $C = (1 e^{-c})(1 \beta)$

[Shomorony et al., "Capacity of the Noisy Shuffling Channel," 2019]

- Similar channel each sequence is drawn exactly once with errors
- Computed capacity $C = 1 H(p) \beta$

[Shomorony et al., "DNA-based storage: Models and fundamental limits", 2021]

- Generalization to Bernoulli drawing distributions with success prob. q
- $C = (1 q)(1 H(p) \beta)$

[Lenz et al., "An Upper Bound on the Capacity of the DNA Storage Channel," 2019]

• Upper bound on capacity

[Lenz et al., "An Upper Bound on the Capacity of the DNA Storage Channel," 2019]

• Upper bound on capacity

[Lenz et al., "Achieving the Capacity of the DNA Storage Channel," 2020]

• Prove achievability of the capacity in [Lenz et al., 2019]

[Lenz et al., "An Upper Bound on the Capacity of the DNA Storage Channel," 2019]

• Upper bound on capacity

[Lenz et al., "Achieving the Capacity of the DNA Storage Channel," 2020]

• Prove achievability of the capacity in [Lenz et al., 2019]

[Weinberger, Merhav, "The DNA Storage Channel: Capacity and Error Probability Bounds," 2021]

• Generalization to asymmetric channels

[Lenz et al., "An Upper Bound on the Capacity of the DNA Storage Channel," 2019]

• Upper bound on capacity

[Lenz et al., "Achieving the Capacity of the DNA Storage Channel," 2020]

• Prove achievability of the capacity in [Lenz et al., 2019]

[Weinberger, Merhav, "The DNA Storage Channel: Capacity and Error Probability Bounds," 2021]

- Generalization to asymmetric channels
- Computation of error probabilities

X

Challenges

Draws of the multi-draw channels are random

Challenges

- Draws of the multi-draw channels are random
- Permutation of the sequences

Lenz, Siegel, Wachter-Zeh, Yaakobi "On the Capacity of DNA-based Data Storage under Substitution Errors"

• Input: X

- Input: X
- Output: d output sequences Y_1, \ldots, Y_d
- *q*-ary symmetric channels: $Y_i = X + E_i$

• Capacity (*d* draws, error probability *p*)

Lenz, Siegel, Wachter-Zeh, Yaakobi "On the Capacity of DNA-based Data Storage under Substitution Errors"

Channel Capacity

Draw Distribution

- Recall:
 - \blacktriangleright D_i : Number of draws of sequence *i*

Channel Capacity

Draw Distribution

- Recall:
 - \blacktriangleright D_i : Number of draws of sequence *i*
 - c = N/M: Sequencing depth (average number of draws per sequence)
- $D_i \rightarrow \text{Poi}(c)$ (Poissonization)

Channel Capacity

Draw Distribution

- Recall:
 - \blacktriangleright D_i : Number of draws of sequence *i*
 - c = N/M: Sequencing depth (average number of draws per sequence)
- $D_i \rightarrow \text{Poi}(c)$ (Poissonization)

Channel Capacity

Theorem: Channel Capacity

Given $2\beta < 1 - H_4(2p)$, the capacity is

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \mathsf{Poi}(c,d) C_{\mathsf{Mul}}(d,p) - \beta(1-\mathrm{e}^{-c})$$

Channel Capacity - Parameter Range

Parameter Range

$$2\beta < 1 - H_4(2p)$$

• Entropy function $H_4(p) = -(1-p)\log_4(1-p) - p\log_4(\frac{p}{3})$

Channel Capacity - Parameter Range

Parameter Range

$$2\beta < 1 - H_4(2p)$$

• Entropy function $H_4(p) = -(1-p)\log_4(1-p) - p\log_4(\frac{p}{3})$

Lenz, Siegel, Wachter-Zeh, Yaakobi "On the Capacity of DNA-based Data Storage under Substitution Errors"

Capacity

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \mathsf{Poi}(c,d) C_{\mathsf{Mul}}(d,p) - \beta(1-\mathrm{e}^{-c})$$

Capacity

Lenz, Siegel, Wachter-Zeh, Yaakobi "On the Capacity of DNA-based Data Storage under Substitution Errors"

Capacity

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \mathsf{Poi}(c,d) C_{\mathsf{Mul}}(d,p) - \beta(1-\mathrm{e}^{-c})$$

Capacity

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \operatorname{Poi}(c,d) C_{\mathsf{Mul}}(d,p) - \beta(1-\mathrm{e}^{-c})$$

• No errors (*p* = 0) [Heckel 2017]

Capacity

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \mathsf{Poi}(c,d) C_{\mathsf{Mul}}(d,p) - \beta(1-\mathrm{e}^{-c})$$

• No errors (p = 0) [Heckel 2017]

$$C(c,\beta,p) = (1-\mathrm{e}^{-c})(1-\beta)$$

Capacity

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \mathsf{Poi}(c,d) C_{\mathsf{Mul}}(d,p) - \beta(1-\mathrm{e}^{-c})$$

• No errors (p = 0) [Heckel 2017]

$$C(c, \beta, p) = (1 - e^{-c})(1 - \beta)$$

• Many draws ($c \rightarrow \infty$)

Capacity

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \mathsf{Poi}(c,d) C_{\mathsf{Mul}}(d,p) - \beta(1-\mathrm{e}^{-c})$$

• No errors (p = 0) [Heckel 2017]

$$C(c,\beta,p) = (1 - e^{-c})(1 - \beta)$$

• Many draws ($c \rightarrow \infty$)

$$C(c,\beta,p) = 1-\beta$$

Capacity

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \mathsf{Poi}(c,d) C_{\mathsf{Mul}}(d,p) - \beta(1-\mathrm{e}^{-c})$$

• No errors (p = 0) [Heckel 2017]

$$C(c, \beta, p) = (1 - e^{-c})(1 - \beta)$$

• Many draws ($c \rightarrow \infty$)

$$C(c,\beta,p)=1-\beta$$

• Long sequences ($\beta \rightarrow 0$)

Capacity

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \mathsf{Poi}(c,d) C_{\mathsf{Mul}}(d,p) - \beta(1-\mathrm{e}^{-c})$$

• No errors (p = 0) [Heckel 2017]

$$C(c,\beta,p) = (1-\mathrm{e}^{-c})(1-\beta)$$

• Many draws ($c \rightarrow \infty$)

$$C(c,\beta,p)=1-\beta$$

• Long sequences ($\beta \rightarrow 0$)

$$C(c,\beta,p) = \sum_{d=0}^{\infty} \mathsf{Poi}(c,d) C_{\mathsf{Mul}}(d,p)$$

Lenz, Siegel, Wachter-Zeh, Yaakobi "On the Capacity of DNA-based Data Storage under Substitution Errors"

Storage and Recovery Rate Tradeoff

• Storage rate: $R_s = \log_2 |\mathcal{C}|/ML$

Storage and Recovery Rate Tradeoff

- Storage rate: $R_s = \log_2 |\mathcal{C}|/ML$
- Recovery rate: $R_{r} = \log_2 |\mathcal{C}|/NL$

Storage and Recovery Rate Tradeoff

- Storage rate: $R_s = \log_2 |\mathcal{C}|/ML$
- Recovery rate: $R_r = \log_2 |\mathcal{C}|/NL$

Storage and Recovery Rate Tradeoff

- Storage rate: $R_s = \log_2 |\mathcal{C}|/ML$
- Recovery rate: $R_{r} = \log_2 |\mathcal{C}|/NL$

- Storage rate: $R_s = \log_2 |\mathcal{C}|/ML$
- Recovery rate: $R_{r} = \log_2 |\mathcal{C}|/NL$

- Storage rate: $R_s = \log_2 |\mathcal{C}|/ML$
- Recovery rate: $R_{r} = \log_2 |\mathcal{C}|/NL$

- Storage rate: $R_s = \log_2 |\mathcal{C}|/ML$
- Recovery rate: $R_{r} = \log_2 |\mathcal{C}|/NL$

- Storage rate: $R_s = \log_2 |\mathcal{C}|/ML$
- Recovery rate: $R_{r} = \log_2 |\mathcal{C}|/NL$

Summary

• Capacity of the DNA storage channel under substitution errors

Summary

- Capacity of the DNA storage channel under substitution errors
- Connection with multi-draw channels

Summary

- Capacity of the DNA storage channel under substitution errors
- Connection with multi-draw channels
- Storage/Recovery rate tradeoff

Summary

- Capacity of the DNA storage channel under substitution errors
- Connection with multi-draw channels
- Storage/Recovery rate tradeoff

Outlook

• Challenges for efficiently encodable/decodable schemes

Summary

- Capacity of the DNA storage channel under substitution errors
- Connection with multi-draw channels
- Storage/Recovery rate tradeoff

- Challenges for efficiently encodable/decodable schemes
 - Each input sequence goes through channel that is unknown a priori

Summary

- Capacity of the DNA storage channel under substitution errors
- Connection with multi-draw channels
- Storage/Recovery rate tradeoff

- Challenges for efficiently encodable/decodable schemes
 - Each input sequence goes through channel that is unknown a priori
 - ► How to combat the indexing problem?

Summary

- Capacity of the DNA storage channel under substitution errors
- Connection with multi-draw channels
- Storage/Recovery rate tradeoff

- Challenges for efficiently encodable/decodable schemes
 - Each input sequence goes through channel that is unknown a priori
 - ► How to combat the indexing problem?
 - Modified concatenated codes [Lenz et al., 2020]

Summary

- Capacity of the DNA storage channel under substitution errors
- Connection with multi-draw channels
- Storage/Recovery rate tradeoff

- Challenges for efficiently encodable/decodable schemes
 - Each input sequence goes through channel that is unknown a priori
 - ► How to combat the indexing problem?
 - Modified concatenated codes [Lenz et al., 2020]
- Insertions/deletions

Summary

- Capacity of the DNA storage channel under substitution errors
- Connection with multi-draw channels
- Storage/Recovery rate tradeoff

- Challenges for efficiently encodable/decodable schemes
 - Each input sequence goes through channel that is unknown a priori
 - ► How to combat the indexing problem?
 - Modified concatenated codes [Lenz et al., 2020]
- Insertions/deletions
- Runlength constraints, balanced GC content

Summary

- Capacity of the DNA storage channel under substitution errors
- Connection with multi-draw channels
- Storage/Recovery rate tradeoff

Outlook

- Challenges for efficiently encodable/decodable schemes
 - Each input sequence goes through channel that is unknown a priori
 - ► How to combat the indexing problem?
 - Modified concatenated codes [Lenz et al., 2020]
- Insertions/deletions
- Runlength constraints, balanced GC content

Thank you!