Optimizing Large-Scale Plasma Simulations on Heterogeneous Memory with Effective Data Placement Across Memory Hierarchy

Jie Ren¹, Jiaolin Luo¹, Ivy Peng², Kai Wu¹, and Dong Li³
¹University of California Merced, ²Lawrence Livermore National Laboratory

Motivation
Enable large-scale plasma simulation.

- Plasma Simulation
 - Plasma simulations are critical for understanding plasma dynamics in many fields.
 - Particle-In-Cell (PIC) technique is one of the most popular algorithms in plasma simulation.

- WarpX[1] is a state-of-the-art plasma accelerator simulation code to be deployed in the upcoming exascale HPC system
- WarpX can have large memory consumption
 - a production run on the Cori supercomputer simulating 62 billions of particles consumes up to 8.9 TB memory

- Persistent memory (PM) enables WarpX simulation in larger scales
 - Compared with Summit and Sierra (the top 2 and top 3 supercomputers), the Optane-based supercomputer increases the simulation scale by 3.1x and 5.5x respectively.

Performance Characterization on WarpX

- Particles & fields dominate memory consumptions of WarpX
 - In WarpX, there are four types of data objects, including particles, fields, metadata, and temporary data
 - particles and fields should be the major optimization targets

- WarpX has iteratively, streaming like memory access pattern
 - WarpX is an iterative solver; each iteration includes five major computation phases.
 - The memory access pattern provides opportunity to prefetch data into fast memory/processor cache

- The execution of WarpX is not bounded by DRAM/persistent memory bandwidth.
 - rich bandwidth for data migration

WarpX-PM: An Automatic Data Placement Solution for WarpX

- The heterogeneous memory space is partitioned based on the functionality and access patterns of data objects in WarpX.

- Static data placement for metadata space & temporary space
 - Pin performance-critical data into DRAM.

- Processor cache prefetch for field data
 - Prefetch field data to processor-cache directly.
 - fields data that are not stored in a contiguous memory space -> difficult to dynamically migrate between DRAM and PM

- Processor cache prefetch for field data
 - Dynamic migration (copy) of particles batch by batch using helper threads
 - Particles are periodically migrated into migrations space;
 - Computation always accesses particles in DRAM.

Experiment Results

- A combination of static data placement, dynamic migrations and cache prefetching can make the best use of the PM-based memory hierarchy.

- Testing bed
 - 2 x Intel Xeon Scalable processor
 - 35.75 MB last level cache
 - 192GB DRAM + 1.5TB Persistent Memory (Intel Optane DC PMM)

- WarpX-PM outperforms existing hardware-level memory management (DRAM-cached), OS-level memory management (NUMA first-touch policy)
- Different execution phase in different simulation problems exhibit different sensitivity to those techniques.
- WarpX-PM with the three proposed techniques achieves the best performance in all problems.