Optimizing Large-Scale Plasma Simulations on Heterogeneous Memory with

Effective Data Placement Across Memory Hierarchy

Jie Ren¹, Jiaolin Luo¹, Ivy Peng², Kai Wu¹, and Dong Li¹

¹University of California Merced, ²Lawrence Livermore National Laboratory

Enable large-scale plasma simulation.

Plasma Simulation

- <u>Plasma simulations</u> are critical for understanding plasma dynamics in many fields.
- <u>Particle-In-Cell (PIC)</u> technique is one of the most popular algorithms in plasma simulation.

Fig. Plasma simulation

Fig. Particle-in-cell (PIC) Method

particles

temporary data

fields metadata

- <u>WarpX[1]</u> is a state-of-the-art plasma accelerator simulation code to be deployed in the upcoming exascale HPC system
- WarpX can have large memory consumption
- a production run on the Cori supercomputer simulating 62 billions of particles consumes up to 8.9 TB memory

Persistent memory (PM) enables WarpX simulation in larger scales

• Compared with Summit and Sierra (the top 2 and top 3 supercomputers), the Optane-based supercomputer increases the simulation scale by 3.1x and 5.5x respectively.

Performance Characterization on WarpX

□ Particles & fields dominate memory consumptions of WarpX

- In WarpX, there are four types of data objects, including particles, fields, metadata, and temporary data
- particles and fields should be the major optimization targets

□ WarpX has iteratively, streaming like memory access pattern

• WarpX is an iterative solver; each iteration includes five major computation phases.

(2)

(3)

The memory access pattern provides opportunity to prefetch data into fast memory/processor cache

- Execution phases: (1) Particle Pusher
 - Current deposition

Most time-

consuming

phases

- Field Solver
- (4) Field Gather
- (5) Others

Fig . The computation routine of PIC method

□ The execution of WarpX is not bounded by DRAM/persistent memory bandwidth.

rich bandwidth for data migration

WarpX-PM: An Automatic Data Placement Solution for WarpX

The heterogeneous memory space is partitioned based on the functionality and access patterns of data objects in WarpX.

□ Static data placement for metadata space & temporary space

• Pin performance-critical data into DRAM.

Processor cache prefetch for field data

- Prefetch field data to processor-cache directly.
 - fields data that are not stored in a contiguous memory space
 -> difficult to dynamically migrate between DRAM and PM

Processor cache prefetch for field data

- Dynamic migration (copy) of particles batch by batch using helper threads
 - Particles are periodically migrated into migrations space;
 - Computation always accesses particles in DRAM.

Experiment Results

- A combination of <u>static data placement</u>, <u>dynamic migrations</u> and <u>cache prefetching</u> can make the best use of the PM-based memory hierarchy.
 - Testing bed
 - 2 x Intel Xeon Scalable processor
 - 35.75 MB last level cache
 - 192GB DRAM + 1.5TB Persistent Memory (Intel Optane DC PMM)

- WarpX-PM outperforms existing hardware-level memory management (DRAM-cached), OS-level memory management (NUMA first-touch policy)
- Different execution phase in different simulation problems exhibit different sensitivity to those techniques.
- WarpX-PM with the three proposed techniques achieves the best performance in all problems.

[1] J-L Vay, A Almgren, J Bell, L Ge, DP Grote, M Hogan, O Kononenko, R Lehe, A Myers, C Ng, and others. 2018. Warp-X: A new exascale computing platform for beam-plasma simulations. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment 909 (2018), 776-779

