
Optimizing Large-Scale Plasma Simulations on Persistent
Memory-based Heterogeneous Memory with Effective Data

Placement Across Memory Hierarchy
Jie Ren 1, Jiaolin Luo 1, Ivy Peng 2, Kai Wu 1 and Dong Li 1

1 University of California, Merced 2 Lawrence Livermore National Laboratory

1 INTRODUCTION
Plasma simulations are critical for understanding plasma dynam-
ics in space weather and fusion devices. The particle-in-cell (PIC)
method is an important model that enables large-scale plasma sim-
ulations on high-performance computing (HPC) systems. The PIC
method uses computational particles to simulate plasma particles,
such as electrons and protons. High-fidelity PIC simulations of-
ten use billions and even trillions of particles, which require high
memory capacity.

Persistent memory (PM), exemplified by the Intel Optane DC
PMM, provides a solution to meet the requirement of high memory
capacity in HPC applications. For instance, the Intel Optane PM can
provide up to twelve terabyte (TB) memory on a single machine.
However, there is a performance gap between PM and DRAM. The
Intel Optane NVMhas three times latency and about 38% bandwidth
of DRAM. Hence, PM often comes with a small DRAM (tens of
gigabytes) to boost performance. As a result, PM and DRAM form
a heterogeneous memory (HM) system. How to place and migrate
data between PM and DRAM to leverage the speed of DRAM and
capacity of PM remains active research.

In this study, we use the latest PM hardware to enable large-scale
plasma simulations. We analyze the performance and develop per-
formance models for optimizing PIC codes on PM-DRAM systems.
Our performance analysis and optimization use a state-of-the-art
electromagnetic PIC code called WarpX [1]. Nonetheless, the opti-
mization strategies derived from this work are generally applicable
to other PIC-based simulation codes.

WarpX is amission-critical production-level application designed
for efficient executions on large-scale HPC systems and future Ex-
ascale machines. As a PIC method, WarpX has high memory foot-
prints for simulating particles moving in electromagnetic fields. A
large memory capacity is a key enabler for large-scale simulations
in WarpX.

We analysis the performance of WarpX and identify two chal-
lenges in optimizing WarpX on PM-based systems. First, WarpX
has frequent read/write with a streaming-like access pattern, which
intensifies memory accesses. Given the low bandwidth of PM com-
pared to DRAM, this access pattern is unfavorable. Second, the
WarpX code uses tens of millions of data objects and frequent mem-
ory (de)allocation. Managing such a large number of data objects
with diverse properties on DRAM and PM is complex.

We introduce a set of techniques to optimize the performance of
WarpX on PM. Data objects are characterized and classified based on
their lifetime and memory access patterns. This information guides
their placement and migration on PM and DRAM at runtime. We

1The full paper of this abstract appears in International Conference on Supercomputing
(ICS’21) and can be found in http://pasalabs.org/papers/2021/ICS21_WarpX_Optane.pdf

metadata
space

temporary
space migration

space
particle 

data

PM
M

D
R
AM

prefetch

field data

writeback

Figure 1: Overview of WarpX-PM. The white and shadow boxes repre-
sent functionality and mechanisms, respectively.

make the best use of memory hierarchy and employ a combination
of data migration and processor-cache prefetch mechanisms. The
evaluation shows we improved the WarpX execution on Optane-
only by 66.4% and outperformed DRAM-cached, the NUMA first-
touch policy, and a state-of-the-art HM solution (Nimble [2]) by
38.8%, 45.1% and 83.3%, respectively.

2 PERFORMANCE CHARACTERIZATION FOR
WARPX

PIC codes typically have the following characteristics. PIC codes
contain four types of data objects, including field, particle,
metadata, and temporal data. Field and particles are the main
data structures, and consume the most memory footprint. The core
PIC routines include four phases – current deposition, field
solver, field gather, and particle pusher. Each phases access
all some of data objects in WarpX.

To study memory access behavior of WarpX, we build profiler
for each execution phase in PIC code and collect (1) memory con-
sumption and life time of different data objects, (2) data access
pattern for different data objects in different execution phases and
(3) memory bandwidth consumption of WarpX’s execution. We
profile three different types of plasma simulation with WarpX and
have the following observations to guide our design:

Observation 1: Particle data and fields data dominate the mem-
ory consumption of WarpX. Metadata and temporal data only con-
sumes less than 10% of memory in WarpX.

Observation 2: WarpX is a iterative solver and has streaming-
like data access pattern. Among all the execution phases, push par-
ticles, deposit current and field solve are the most time-consuming.

Observation 3: The execution of WarpX is not bounded by
DRAM/persistent memory bandwidth in most of times.

The memory bandwidth utilization is about 10% of peak memory
bandwidth in most of times. Hence, prefetching data to DRAM
would not constraint the bandwidth used by the application.

3 WARPX-PM DESIGN
Motivated by the above performance characterizations, we intro-
duce WarpX-PM (Figure 1), a runtime system to manage data place-
ment onDRAMand PM automatically.WarpX-PMpartitions DRAM
into four spaces based on functionality and access patterns in



Jie Ren 1 , Jiaolin Luo 1 , Ivy Peng 2 , Kai Wu 1 and Dong Li 1

18.3

24.7 24.8

14.1

M S P D

Problem A

5

10

15

20

25

A
ve

ra
ge

ti
m

e
br

ea
kd

ow
n

p
er

it
er

at
io

n
(s

)

349.2
314.7

269.9
243.2

M S P D

Problem B

70

140

210

279

349 85.4
90.1

80.3

48.1

M S P D

Problem C

18

36

54

72

90 1268.1

750.5 739.7
604.4

M S P D

Problem D

254

507

761

1015

1268
105.7

98.4
92.5

60.6

M S P D

Problem E

21

42

63

85

106 278.2
298.7

281.6

236.1

M S P D

Problem F

60

119

179

239

299

field gather particle pusher current deposition field solver others

M: Memory mode (Optane+DRAM) S: Static data placement P: Processor L3-cache prefetch D: Dynamic data placement

field gather particle pusher current deposition field solver others

M: Memory mode (Optane+DRAM) S: Static data placement P: Processor L3-cache prefetch D: Dynamic data placement

Figure 2: Performance breakdown of main phases of execution to compare the static data placement, cache prefetch, and dynamic placement
with memory mode.

WarpX. The metadata space and temporary space reserve memory
space in DRAM. Data stored in those space are not causing data
movement between DRAM and PMM. The migration space acts as
a software-managed DRAM cache to prefetch particles from PM
before they are used in computation. Finally, the free space stores
the maximum possible field data. We introduce three memory opti-
mization techniques used in different space as follow.

Static Data Placement. The metadata space stores the meta-
data updated infrequently but accessed frequently. The temporary
space stores short-lived data objects frequently allocated and freed.
Those short-lived data objects share and reuse the temporary space
without causing data movement between DRAM and PMM.WarpX-
PM uses static placement to addresses the fundamental limitations
in hardware-managed DRAM cache.

Cache Prefetch. The fields are not dynamically migrated be-
tween PM and DRAM as particles, because the fields are not contigu-
ously allocated as particles, but spread across the memory address
space, which leads to either highly inefficient page-level migration
or costly engineering efforts for object-level migration. WarpX-PM
triggers prefetch before computation by leveraging iterative struc-
tures in each execution phase. Specifically, we propose to use a
performance model to decide when the prefetch happen to mini-
mize the execution time of accessing the fields.

Dynamic Data Placement. WarpX-PMmigrates the particles be-
cause they are used periodically. To implement the particle prefetch-
ing strategy, two challenges must be addressed. First, WarpX-PM
needs to decide the number of threads to copy the particle batches.
WarpX-PM uses helper threads instead of application threads to copy
particles to avoid delaying the execution of application threads.
Using a large number of helper threads accelerate data copy but re-
duces processor cores and memory bandwidth available for WaprX
execution. Using a small number of helper threads increases the risk
of exposing data copy into the critical path of WaprX execution if
data copy cannot finish in time. Second, the decision of the number
of helper threads must be adaptive and lightweight. Different input
problems or MPI/OpenMP configurations may consume memory
bandwidth differently and need different numbers of helper threads
for the best performance. Therefore we build a performance model
to generate a particle data migration strategy and minimize the
system execution time, by considering the memory bandwidth, the
number of helper thread, and computation time of each execution
phase. Our performance modeling is lightweight, and we avoid
exhaustive search of all possible of data placement by eliminating
those that can obviously cause performance loss.

4 EVALUATION
We evaluate WarpX-PM on a two socket machine with Intel Xeon
Scalable processor. It equips 192GB DRAM and 1.5TB Optane DC

PMM.We compare WarpX-PMwithmemorymode, which is a hardware-
based memory management solution, and NUMA first-touch, which
is a OS-level memory management solution. The evaluation uses 6
plasma simulations with WarpX which comes from various plasma
accelerator simulations with a wide range of memory consumption
(up to 1.2TB).

Figure 2 reveals thatWarpX-PM performs the best in all cases. On
average, WarpX-PM outperforms memory mode, Optane-only, and
NUMA first-touch by 38.8%, 66.4%, and 45.2%, respectively. We fur-
ther quantify the performance improvement from static data place-
ment, cache prefetch, and dynamic data placement in WarpX-PM.
For each problem, we report the per-iteration time in the memory
mode as the baseline (M). For comparison, we run WarpX-PM with
only static data placement (S), with static data placement and cache
prefetch (P), and with all the three techniques (D). WarpX-PM with
the three proposed techniques achieves the best performance in all
problems. Different input problems exhibit different sensitivity to
these techniques.

We further compare WarpX-PM with a state-of-the-art page mi-
gration system for HM, named improved active list (IAL) [2]. This
system improves an existing page replacement mechanism in the
Linux kernel (i.e., an FIFO-based active list). WarpX-PM outperforms
IAL by 83.3% on average and up to 96.6%.

Compared with the memory mode, WarpX-PM consumes higher
DRAM bandwidth, indicating that fast memory accesses happen
more often in WarpX-PM to make the best use of DRAM.

We also study the NUMA effects of using PMM on multi-socket
platform. Efficient data placement is not only about using DRAM or
PM but also about avoidingmemory accesses to a remote socket.We
compare the memory mode and NUMA first-touch with WarpX-PM,
and track memory traffic between the two sockets. The evaluation
result shows WarpX-PM has the lowest intro-socket memory traffic
among all cases.

Because of hardware limitation, we cannot evaluate WarpX-PM on
multiple Optane-based machines. However, WarpX-PM focuses on
intra-node data movement optimization, and significantly improves
performance without impacting communication patterns and ap-
plication algorithms. We expect that WarpX-PM can be applied on
larger scales without decreasing application scalability.

REFERENCES
[1] J-L Vay, A Almgren, J Bell, L Ge, DP Grote, M Hogan, O Kononenko, R Lehe, A

Myers, C Ng, and others. 2018. Warp-X: A new exascale computing platform for
beam–plasma simulations. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 909
(2018), 476–479.

[2] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nimble
Page Management for Tiered Memory Systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’19). ACM, New York, NY, USA, 331–345.


	1 Introduction 
	2 Performance Characterization for WarpX
	3 WarpX-PM design
	4 Evaluation
	References

