
11

Carbide: A Safe Persistent Memory Multilingual 
Programming Framework

Morteza Hoseinzadeh* and Steven Swanson

Non-Volatile Systems Laboratory
Department of Computer Science & Engineering

University of California, San Diego

* The first author is currently employed by Oracle

NVMW 2022



22

Non-Volatile

Volatile

<1us
Persistent Memory (PM)

Persistent Memory (PM)

CPU Caches

CPU
Registers

DDR RAM

NAND Solid-State Drives (SSD)

Hard Disk Drives (HDD)

Tape

~0.1ns

1-10ns

80-100ns

10-100us

~10ms

~100ms

Co
st 

($
/G

iB)

Latency

Capacity

N
on-Volatile

Volatile

I/O
 Com

m
ands

Load/Store

CPU

Cache

DRAM

Load/store

I/O Commands

SSD

HDD

TAPE



33

Non-Volatile

Volatile

<1us
Persistent Memory (PM)

Persistent Memory (PM)

CPU Caches

CPU
Registers

DDR RAM

NAND Solid-State Drives (SSD)

Hard Disk Drives (HDD)

Tape

~0.1ns

1-10ns

80-100ns

10-100us

~10ms

~100ms

Co
st 

($
/G

iB)

Latency

Capacity

N
on-Volatile

Volatile

I/O
 Com

m
ands

Load/Store

CPU

Cache

DRAM PM

SSD

HDD

TAPE

Load/store

I/O Commands



44

Challenges of Using PM in User-Level Applications

• Intensified current programming challenges (e.g., memory 
leaks)

• Persistent data consistency
– Volatile CPU caches reorder the updates
– No atomic compare-swap-persist instruction exists
– Stores are not persistent until cache line is flushed
– Non-temporal stores and cache-line flush instructions are expensive

• PM management burden is on user applications
• Handling hardware errors directly in the applications



55

Challenges of Using PM in Storage Systems

• Inefficient usage of PM when used as a block device
• Limited scalability due to PM’s expensive price
Bandwidth

$/GB

1GB/s

100MB/s

10GB/s

0.01 0.1 1 10

Hard Disk Drive

SATA SSD
NVMe SSD

Optane SSD
PM

DRAM



66

MMU
Mappings

PM Programming Model

• A set of standards for enabling application 
development for persistent memory to 
address the PM programming challenges:
+ DAX enabled file system on PM
+ mmap() files (mem pools) to the virtual address
+ User space memory management

NVDIMMs

NVDIMM
Driver

PM-aware
File System

App

PM Man

User Space

Kernel Space

Hardware

Standard
File API Load/Store



77

PM Programming Frameworks

1. Basic PM Programming Frameworks
– Provide interface to access PM
– Make no safety guarantee on usage
– Examples: PMDK, Atlas, go-pmem, Mnemosyne, and NV-Heaps

2. Code Transformation Frameworks
– Statically analyze the code and inject PM operations
– Limit the flexibility to make the program state machine smaller
– Examples: AutoPersist, NVTraverse, Mirror, and Hippocrates

3. Debugging/Bug-Fixing Tools
– Statically analyze the code and do symbolic execution to find the bugs
– NP-Hard problem, and path explosion in large programs
– Examples: NVL-C, Jaaru, and Agamotto



88

PM Programming Frameworks

4. Testing Frameworks
– Dynamically inject failures to test the program
– Completeness proof is not provided
– Examples: PMTest and XFDetector

5. Pre-Compilation Debugging Frameworks
– Apply safety rules statically as it’s being developed
– Limit the flexibility as they apply restrictive safety rules
– Example: Corundum



99

Corundum

• A PM programming library for Rust
• Enforces PM safety at compile time
• High performance due to static analysis
• Idiomatic approach to support PM
• It guarantees no PM-related bug

PM Safety ⊂ Rust’s Type Safety

.rs

Lint/Debug/
Static Analysis

Compiler

Co
m

pi
la

tio
n 

Ti
m

e

Exec

Ru
nt

im
e

Source Code



1010

Corundum Challenges

• Too restrictive
• Risky optimizations are not possible
• Steep learning curve for non-Rust developers

CARBIDE:
USE CORUNDUM FOR DEFINING PERSISTENT TYPES

USE C++ FOR DEVELOPING THE PROGRAM



1111

Carbide

• Developing persistent data structure type 
separately using Corundum in Rust (lib.rs) 

• Strict rules apply to persistent types only

• Data types are externally available through a 
dynamic library (lib.so) with an automatically 
generated API (lib.h)

• The Export Checker statically checks the container 
types for the capability of external usage

• The Import Checker statically checks the types 
being stored in PM



1212

Example



1313

Carbide’s Design Goals

1. Preserve the same guarantees as Corundum’s

2. Provide a seamless cross-language PM management system

3. Provide a safe C++ interface to interact with data as defined in Rust

4. Statically checked the external usage of the persistent type definition in Rust

5. Statically checked the usage of external persistent type declaration in C++

6. Specify a design pattern to make a C++ type persistent

AP
I D

es
ig

n



1414

API Design Challenges

• Type Interoperability
– Rust and C++ layout memory differently

• Polymorphism
– Polymorphic types are not available through dynamic libraries in Rust and C++

• Memory Leaks
– C++ does not garbage collect when dynamic allocation is used

• Lifetime Conflict
– The RAII model in C++ and Rust have distinct lifetime scopes 



1515

Type Interoperability

• Portable type:
– Annotate external types for a specific set of pools
– Corundum’s rules apply (Rust’s type system)
– Exactly one pool type parameter
– Other type parameters are used in form of byte 

arrays
– External interface is FFI-compatible
– Provide at least one transactional constructor

• Carbide exports the type’s functionality by 
generating an FFI for every specified pool

Ex
po

rt
 R

ul
es



1616

Polymorphism

• Type-parameter reduction and 
reparameterization
– Specialize the data type parameters with void
– Specialize the pool type parameters for every 

specified pools and generate the FFIs
– Implement a C++ template class (vessel class) 

with the same parameters and functionality
– Implement the type traits for the given pools in 

C++ to call the corresponding APIs



1717

Memory Leaks

• There is no PM dynamic allocation available in C++

• Only Carbide’s internal types can manage PM

• Every allocation is owned by an object in Rust



1818

Lifetime Conflict

• Lifetime of a C++ object is unknown when passed to a 
foreign function

• The object’s resources are release at the end of the scope

C++
------------------------------------
{
Obj a; // constructor call
foo_ffi(a);

} // a.~Obj() destructor call

{
Obj *b = bar_ffi();

read(b); // access violation
}

Rust
-------------------------------
Obj b; // never drops

fn foo_ffi(a: Obj) {
b = a;

}

fn bar_ffi() -> &Obj {
&b

}



1919

Extended RAII

• A hyper scope is a scope extending from C++ to Rust
• Gen<T,P> as a cross-language reference type lives in a hyperscope

– Defined in both Rust and C++
– Contains a relative pointer to the destructor function to call from Rust
– Dynamically allocates and construct the object when instantiated in C++
– Does not immediately release resources in the destructor
– Can merely move the resource to a ByteArray<T,P>

Rust
-----------------------------------
ByteArray<Obj> b; // never drops

fn foo_ffi(a: Gen<Obj>) {
b = ByteArray::from(a);

}

fn bar_ffi() -> Gen<Obj> {
b.as_gen()

}

C++
------------------------------------
TXN {
Gen<Obj> a; // dyn alloc, cons
foo_ffi(a);

}

{
Obj *b = bar_ffi();

read(b); // Ok
}



2020

Performance Results



2121

Optimization Impact and Scalability



2222

Conclusion

• PM is an advanced memory technology that offers both high-
performance and non-volatility

• PM programmers face a set of safety challenges, as well as 
higher price per GB compared to other NVM block devices 

• Current PM programming frameworks exclusively offer safety 
or programming flexibility

• We presented Carbide, a PM programming framework that 
allows using Corundum data structures in C++ to guarantee 
safety as well as programming flexibility



2323

Thank you!


