
Carbide: A Safe Persistent Memory Multilingual Programming Framework

1 Motivation

Persistent memory (PM) technology has brought the oppor-
tunity of accessing persistent data directly by using load and
store instructions, improved memory system capacity, and a
unified programming model for persistent and volatile pro-
grams. Many PM libraries [1–6] have been introduced to
operate on PM devices safely. Although they provide safe in-
terfaces to interact with PM, not all of them verifiably address
novel PM programming challenges. Of a particular class of
PM libraries, some of them provide strong guarantees to pre-
vent PM-related bugs. Corundum [4] is the state-of-the-art in
this category, but it applies several restrictive rules that thwart
performance optimizations. The diversity in the offerings and
limitations of the current PM programming frameworks mo-
tivates us to look for a hybrid PM programming model that
can be both flexible and verifiably safe.

2 The Key Insight

Our work relies on the fact that even though the persistent
data types should be implemented strictly safely, the other
parts can be developed more freely. Hence, we propose that
using Corundum [4] to implement persistent types and port
them into C++ in the form of a compiled library can provide
safety and flexibility at the same time.

3 Main Artifacts

This paper presents Carbide, a multilingual PM framework
that allows separately developing PM data structures in Corun-
dum and using them in C++. This improves the flexibility
in programming and code reuse while maintaining strong
PM safety guarantees. Figure 1 depicts Carbide’s system de-
scription. Multilingual programming essentially requires the
programmer to consider strict directives to follow. Carbide’s
automatic code generation and static type checkers ensure
that the safety invariants are satisfied in both languages. Our
contributions in developing the Carbide framework is:

• Carbide preserves almost all Corundum’s safety guaran-
tees in C++.

• Carbide introduces a notion of the expanded lifetime
of persistent objects with lifespans stretching between
Rust’s and C++’s scopes.

lib.rs

lib.so lib.hExport Checker
rustc

main.cpp
Import Checker
clang++

executable

Developed
Generated

Lexical File
Binary File
Compiler

Figure 1: Carbide’s System Description. The programmer
defines persistent data types in lib.rs using Rust; Carbide
generates the library and the header files; The programmer
uses them in main.cpp using C++.

• Carbide statically checks the exporting procedure to pre-
vent unsafe access to persistent data in Rust.

• Carbide performs static type checking while externally
using the persistent objects from C++.

• Carbide transfers polymorphic types from a compiled
library through a type parameter reduction and reparam-
eterization technique.

• Carbide provides an option for automatically convert-
ing volatile data structures, including the C++ standard
template library’s container types, into persistence under
specific criteria.

4 Key Components

Implementing such a system may jeopardize the safety guaran-
tees that Corundum provides because many of the techniques
used in Corundum are based on Rust’s features, and they are
not available in C++. Below we list the main safety concerns
and our solutions for them:

Type Interoperability The types implemented in Rust have
different memory layouts from C++; therefore, they are

1



not fully operable. Rust allows the programmer to spec-
ify a “C” representation of the type explicitly, but this is
only available for trivial types such as a struct with prim-
itive fields. The persistent pointers and type wrappers
are not specified so. Carbide automatically generates a
C++ interface for every Corundum type as a vessel to
make the type fully operational in C++.

Polymorphism Persistent types are usually defined as con-
tainer classes that take on many forms. However, a
polymorphic type is not portable through a compiled
library as the type parameters cannot be derived in post-
compilation time. Carbide enforces using byte-arrays to
represent any sized types and carefully evaluate them to
prevent any misinterpretations.

Memory Leaks C++ is not a memory-managed program-
ming language; dynamic allocations may remain un-
reachable and unclaimed, leading to memory leaks. In
Carbide, a static checker guarantees that all persistent
objects have an owner in Rust that manage their alloca-
tions.

Conflicted Lifetimes Although both C++ and Rust use an
RAII model, the two programming languages have differ-
ent scopes, and one object cannot be accurately managed
if it travels between the two scopes. Carbide redefines
RAII model that extends an object’s lifetime from C++
to Rust.

Our experiments show that Carbide vastly improves pro-
grammability at the cost of zero or small performance over-
head when the same design is used. It improves performance
by up to 60% when performance optimizations apply.

5 Key Results and Contributions

Figure 2 shows our experimental results comparing Carbide’s
performance with PMDK, Atlas, Mnemosyne, go-pmem, and
Corundum. Carbide performance is comparable to other PM
systems according. In BST and KVStore workloads that do
not use unsafe coding and objects do not move very often,
Carbide performs almost similar to Corundum. In the B+Tree
workloads, multiple factors adversely affect Carbide’s perfor-
mance: 1) data copies around several times and each copy
needs double allocations for the reference and the byte array,
2) similarly, dropping objects also calls deallocation twice,
and 3) the byte array type has a drop function even if the
underlying data type does not have any destructor (e.g., prim-
itive types). Overall, the results confirm that Carbide’s hybrid
programming framework adds Corundum’s safety to the flex-
ible programming environment in C++ without incurring a
great deal of performance overhead.

INS CHK PUT GET INS CHK REM RND
0

2

4

6

8

BST KVStore B+Tree

E
xe

cu
tio

n
Ti

m
e

(s
)

PMDK Atlas Mnemosyne go-pmem Corundum Carbide

Figure 2: The performance results of comparing Carbide with
other PM systems in terms of execution time.

References

[1] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: Leveraging locks for non-volatile mem-
ory consistency. In Proceedings of the 2014 ACM Inter-
national Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages
433–452, New York, NY, USA, 2014. ACM.

[2] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M.
Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swan-
son. NV-Heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories. In Pro-
ceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’11, pages 105–118, New
York, NY, USA, 2011. ACM.

[3] Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubra-
manian, and Pratap Subrahmanyam. go-pmem: Native
support for programming persistent memory in go. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 859–872, 2020.

[4] Morteza Hoseinzadeh and Steven Swanson. Corundum:
Statically-enforced persistent memory safety. In Pro-
ceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2021, page 429–442, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[5] pmem.io. Persistent Memory Development Kit, 2017.
http://pmem.io/pmdk.

[6] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In ASPLOS

’11: Proceeding of the 16th International Conference on
Architectural Support for Programming Languages and
Operating Systems, New York, NY, USA, 2011. ACM.

2

http://pmem.io/pmdk

	Motivation
	The Key Insight
	Main Artifacts
	Key Components
	Key Results and Contributions

