UniHeap : Managing Persistent Objects

Across Managed Runtimes for Non-Volatile Memory

Daixuan Li Benjamin Reidys Jinghan Sun

Thomas Shull Josep Torrellas Jian Huang

10 ECE ILLINOIS

Non-Volatile Memory: Opportunities & Challenges

System Platform Research Group at UIUC

Programmability Challenge of NVM

Mark all the persistent object updates in the code

Processors

Hierarchical}

ol
M Correctness Problem

[Object 1 Object 2 Volatile Cache

CLWB & SFENCE Instructions

NVM Devi J (/\ Performance Bugs
evice

System Platform Research Group at UIUC

Leveraging Managed Runtime to Manage NVM

‘a £

python ava
Runtime J

k JavaScript /
Hardware Complexity Managed Data Objects |l Popular Programming Models

System Platform Research Group at UIUC

AutoPersist: An Easy-to-Use NVM Framework

AutoPersist: An Easy-To-Use Java NVM
Framework Based on Reachability

Thomas Shull
University of Illinois at
Urbana-Champaign
shull1@illinois.edu

Abstract

Byte-addressable, non-volatile memory (NVM) is emerging
as a revolutionary memory technology that provides persis-
tency, near-DRAM performance, and scalable capacity. To
facilitate its use, many NVM programming models have been
proposed. However, most models require programmers to
explicitly specify the data structures or objects that should
reside in NVM. Such requirement increases the burden on
programmers, complicates software development, and intro-
duces opportunities for correctness and performance bugs.
We believe that requiring programmers to identify the data
structures that should reside in NVM is untenable. Instead,
programmers should only be required to identify durable
roots - the entry points to the persistent data structures at
recovery time. The NVM programming framework should
then automatically ensure that all the data structures reach-
able from these roots are in NVM, and stores to these data
structures are persistently completed in an intuitive order.
To this end, we present a new NVM programming frame-
work, named AutoPersist, that only requires programmers to
identify durable roots. AutoPersist then persists all the data
structures that can be reached from the durable roots in an
automated and transparent manner. We implement AutoP-
ersist as a thread-safe extension to the Java language and
perform experiments with a variety of applications running
on Intel Optane DC persistent memory. We demonstrate that
AutoPersist requires minimal code modifications, and signif-
icantly outperforms expert-marked Java NVM applications.

CCS Concepts - Hardware — Non-volatile memory; «
Software and its engineering — Just-in-time compil-
ers; Source code generation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or ial ad: and that

Jian Huang
University of Illinois at
Urbana-Champaign
jianh@illinois.edu

Josep Torrellas
University of Illinois at
Urbana-Champaign
torrella@illinois.edu

Keywords Java, Non-Volatile Memory, JIT Compilation

ACM Reference Format:

Thomas Shull, Jian Huang, and Josep Torrellas. 2019. AutoPersist:
An Easy-To-Use Java NVM Fi k Based on Reachability. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’19), June 22-26, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 17 pages. https://doi.
org/10.1145/3314221.3314608

1 Introduction
There have recently been significant technological advances
towards providing fast, byte-addressable non-volatile mem-
ory (NVM), such as Intel 3D XPoint [37], Phase-Change Mem-
ory (PCM) [52], and Resistive RAM (ReRAM) [10]. These
memory technologies promise near-DRAM performance,
scalable memory capacity, and data durability, which offer
great opportunities for software systems and applications.
To enable applications to take advantage of NVM, many
NVM programming frameworks have been proposed, such as
Intel PMDK [6], Mnemosyne [60], NVHeaps [21], Espresso
[62], and others [20, 23, 25, 35, 48]. While the underlying
model to ensure data consistency [20, 50] varies across frame-
works, all of these frameworks share a common trait: they
require the programmer to explicitly specify the data struc-
tures or objects that should reside in NVM. This limitation re-
sults in substantial effort from programmers, and introduces
opportunities for correctness and performance bugs due to
the i d progr ing plexity [53]. Moreover, it
limits the ability of applications to use existing libraries.
We believe that requiring users to identify all the data
structures or objects that reside in NVM is unreasonable. In-
stead, the user should only be required to identify the durable
roots, which are the named entries into durable data struc-
tures at recovery time. Given this input, the NVM framework
should then automatically ensure that all the data structures

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissi org
PLDI 19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6712-7/19/06...$15.00
https://doi.org/10.1145/3314221.3314608

hable from these durable roots are in NVM.

In this paper, we present a new NVM programming frame-
work named AutoPersist that only requires programmers to
identify the set of durable roots. While most NVM frame-
works are implemented in C or C++, we choose to imple-
ment AutoPersist as an 1 to the Java 1 ge. As
is ¢ for ged lang Java already provides
transparent support for object movement in memory, as well
as high-level semantics for programmers.

System Platform Research Group at UIUC

@durable root
public static KeyValueStore kv;

Volatile Memory

1 |
|

Markings

21 I\/Iarl@gs In

~
s = 7]

~
S

Non-Volatile Memory

n AutoPersist

-
e =

vious Work

n

Programmability Improvement

with Specifying Durable Roots

Managing Persistent Object Across Runtimes is Desirable

Unified Persistence Layer

Object NVM Device

File System Enable Data Sharing with File Abstraction.

System Platform Research Group at UIUC

Managing Persistent Object Across Runtimes is Desirable

Enable Data Sharing with Persistent Object Abstraction.

Unified Persistence Layer

Object NVM Device

File System Enable Data Sharing with File Abstraction.

System Platform Research Group at UIUC

Managing Persistent Object Across Runtimes is Desirable

‘_(:(') Java

Web Service Shared Libraries Data Analytics

Sharing persistent objects across multiple runtimes is Needed.

System Platform Research Group at UIUC 7

State-of-the-Art Object Sharing Approaches

* Thrift/Protobuf: * Shared Memory:

RPC Protocol l l
Shared Memory

Does not support NVM

Serialization Overhead

System Platform Research Group at UIUC

UniHeap: Managing Persistent Objects Across Runtimes

JavaScript

Unified Persistence Layer

Shared NVM Heap

NVM Device

System Platform Research Group at UIUC

Challenges of Persistent Object Management Across Runtimes

Javascript Unified Object Model

Unified Persistence Layer . .
Persistent and Crash-Safe Implementation

Shared NVM Heap

Efficient and Correct GC

System Platform Research Group at UIUC

Challenges of Persistent Object Management Across Runtimes

Javascript Unified Object Model

Unified Persistence Layer

Shared NVM Heap

NVM Device

System Platform Research Group at UIUC

Unified Object Model and Type System

D S N S S T Y P

Java boolean, char long float double reference,
byte array

Python - - int long float - list, dict,
tuple

JavaScript boolean - num num num num array

System Platform Research Group at UIUC

Challenges of Persistent Object Management Across Runtimes

JavaScript

Unified Persistence Layer

Persistent and Crash-Safe Implementation

Shared NVM Heap

NVM Device

System Platform Research Group at UIUC

Compatible with Automated Data Persistence Approach

Durable Root

Non-Volatile Memory

Volatile Memory

/

.

\

/

;B};

/

System Platform Research Group at UIUC

@

\

Compatible with Automated Data Persistence Approach

Durable Root

Volatile Memory

Non-Volatile Memory

oo _

System Platform Research Group at UIUC

/

2

atomic_begin

Persist Objects

atomic_end

\

0 Crash Consistency

Q Failure Atomic

/

The Persistent Overhead of Managing Persistent Objects

update undo log redo log
Undo Logging
' begin I end Redo and undo logs bring
Redo Logging duplicate write overhead
Tx_begin Tx_end Reduce Logging Overhead
Qutolplere Jpdate with Atomic Update and
| il | I I N Out-of-Place Update
Tx_begin Tx_end

System Platform Research Group at UIUC

Managing Persistent Objects in A Log-Structured Manner

Object Field Index Table Tx1 [tog > tog | Tx2 [1og > tog >/ og |

fidl | fid2 | fid3 | ... | fid ‘
[fid1 [fid2 [fid3] .. | fidn S =3 [log —>[log]_)[log]*)[oz] Log Region

Valid ! :
Heap Header | Plass Region Root Table Bitmap | Object Region Log Region

System Platform Research Group at UIUC

Managing Persistent Objects in A Log-Structured Manner

Heap Header Plass Region Root Table B\i{c?rlllgp Object Region Log Region

Shared NVM Heap

System Platform Research Group at UIUC

Managing Persistent Objects in A Log-Structured Manner

Valid
Bitmap

. Object Region Log Region

Decoupling the Data and Metadata of Objects

System Platform Research Group at UIUC

Managing Persistent Objects in A Log-Structured Manner

Object Field Index Table 1 [log *)[o] ™ [r]_>[log]_>[log]

fid1 [fid2 | fid3 | .. | fid ‘
[fid1 [fia2 [fia3 [.| fidn] —— Tx3 [log > log |—>{ log |—>{ log | Log Region

Valid ! :
Heap Header | Plass Region Root Table Bitmap | Object Region Log Region

System Platform Research Group at UIUC

Managing Persistent Objects in A Log-Structured Manner

Tx1

Tx3

|

!

L J o

Log Region

0 Crash Safety

Q Concurrent Access

Q Garbage Collection

Transaction-based Out-of-place Object updates

System Platform Research Group at UIUC

Managing Persistent Objects in A Log-Structured Manner

Object Field Index Table

[fid1 I fid2 I fid3 I I fidn]

DRAM

Tx1

Tx3

'

|

’l o8 I ; Log Region

Address Remapping with Cached Index Table

System Platform Research Group at UIUC

Managing Persistent Objects in A Log-Structured Manner

Object Field Index Table

1 (s} > ios] D2 (g }>{ o

| fid1 | fid2 | fid3 | ... | fidn |

DRAM = [o _)[o]_)[=]_)[o] Log Region

Valid ! :
Heap Header | Plass Region Root Table Bitmap | Object Region | Log Region

Efficient and crash-safe persistent object management

System Platform Research Group at UIUC

Challenges of Persistent Object Management Across Runtimes

JavaScript

Unified Object Model

Unified Persistence Layer

Shared NVM Heap
NVM Device

Persistent and Crash-Safe Implementation

Efficient and Correct GC

System Platform Research Group at UIUC 10

Garbage Collection of UniHeap

@ject Region Bxal\l/:g

N

P

Object

-

Object
Object

Object

Object

.

/

System Platform Research Group at UIUC

4 R

New Object Region

Alive Object

\ /

Marking phase

Relocation phase

Compaction phase

Clean-up phase

20

Garbage Collection of UniHeap

Marking phase € Naturally Crash-Safe

Relocation phase -

. Compaction phase — € Keep old data until Clean up Phases

. Cleanup phase —~

Crash Safety of GC

System Platform Research Group at UIUC 21

Coordinated GC Across Managed Runtimes

Uniheap

HotSpot JVM CPython i dermonkei

Mapplng Set Mapplng Set Mapplng Set

Root Table

System Platform Research Group at UIUC

22

Put It All Together

Java Python
Program Program

Java
Module

—_—— e -

Runtime

UniHeap Shared Library

N e —— e - - —

Direct Memory Access

Shared NVM Heap

UniHeap/

System Platform Research Group at UIUC

23

CPU: 24-core Intel 2nd Xeon
NVM: 8 * 128GB Intel Optane DC

Java: YCSB over QuickCached and H2
Python: Python Performance Benchmark Suite

JavaScript: JetStream?2

24

Performance of Persistent Object Sharing

N

1.4

|
1288B | !
0

Shat!a-lt}féfﬁ\ B SharedMem ILUHII-f_fz@anp

w
w n

N
wn

=
u

Normalized Speedup

©
wn

B 1KB

o

UniHeap outperforms existing approach by 1.2x - 3.4x

System Platform Research Group at UIUC

Scalability of UniHeap

A B C D F

m1Runtime m2Runtimes m4 Runtimes 6 Runtimes m 8 Runtimes

Normalized TPS
- N w
= (0] N (0] w (0]

©
n

o

UniHeap can scale to support multiple managed runtimes.

System Platform Research Group at UIUC

26

UniHeap Summary

JavaScript

Unified Persistence Layer

Shared NVM Heap

NVM Device

System Platform Research Group at UIUC

27

Thanks!

Daixuan Li

daixuan2@lllinois.edu

Benjamin Reidys Jinghan Sun Thomas Shull

Josep Torrellas Jian Huang

E System Platform Research Group at UIUC E C E I L L I N o I S

