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Leveraging Managed Runtime to Manage NVM
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AutoPersist: An Easy-to-Use NVM Framework
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Abstract

Byte-addressable, non-volatile memory (NVM) is emerging
as a revolutionary memory technology that provides persis-
tency, near-DRAM performance, and scalable capacity. To
facilitate its use, many NVM programming models have been
proposed. However, most models require programmers to
explicitly specify the data structures or objects that should
reside in NVM. Such requirement increases the burden on
programmers, complicates software development, and intro-
duces opportunities for correctness and performance bugs.
We believe that requiring programmers to identify the data
structures that should reside in NVM is untenable. Instead,
programmers should only be required to identify durable
roots - the entry points to the persistent data structures at
recovery time. The NVM programming framework should
then automatically ensure that all the data structures reach-
able from these roots are in NVM, and stores to these data
structures are persistently completed in an intuitive order.
To this end, we present a new NVM programming frame-
work, named AutoPersist, that only requires programmers to
identify durable roots. AutoPersist then persists all the data
structures that can be reached from the durable roots in an
automated and transparent manner. We implement AutoP-
ersist as a thread-safe extension to the Java language and
perform experiments with a variety of applications running
on Intel Optane DC persistent memory. We demonstrate that
AutoPersist requires minimal code modifications, and signif-
icantly outperforms expert-marked Java NVM applications.

CCS Concepts - Hardware — Non-volatile memory; «
Software and its engineering — Just-in-time compil-
ers; Source code generation.
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1 Introduction
There have recently been significant technological advances
towards providing fast, byte-addressable non-volatile mem-
ory (NVM), such as Intel 3D XPoint [37], Phase-Change Mem-
ory (PCM) [52], and Resistive RAM (ReRAM) [10]. These
memory technologies promise near-DRAM performance,
scalable memory capacity, and data durability, which offer
great opportunities for software systems and applications.
To enable applications to take advantage of NVM, many
NVM programming frameworks have been proposed, such as
Intel PMDK [6], Mnemosyne [60], NVHeaps [21], Espresso
[62], and others [20, 23, 25, 35, 48]. While the underlying
model to ensure data consistency [20, 50] varies across frame-
works, all of these frameworks share a common trait: they
require the programmer to explicitly specify the data struc-
tures or objects that should reside in NVM. This limitation re-
sults in substantial effort from programmers, and introduces
opportunities for correctness and performance bugs due to
the i d progr ing plexity [53]. Moreover, it
limits the ability of applications to use existing libraries.
We believe that requiring users to identify all the data
structures or objects that reside in NVM is unreasonable. In-
stead, the user should only be required to identify the durable
roots, which are the named entries into durable data struc-
tures at recovery time. Given this input, the NVM framework
should then automatically ensure that all the data structures
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hable from these durable roots are in NVM.

In this paper, we present a new NVM programming frame-
work named AutoPersist that only requires programmers to
identify the set of durable roots. While most NVM frame-
works are implemented in C or C++, we choose to imple-
ment AutoPersist as an 1 to the Java 1 ge. As
is ¢ for ged lang Java already provides
transparent support for object movement in memory, as well
as high-level semantics for programmers.
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Managing Persistent Object Across Runtimes is Desirable
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Managing Persistent Object Across Runtimes is Desirable
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Managing Persistent Object Across Runtimes is Desirable
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State-of-the-Art Object Sharing Approaches
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UniHeap: Managing Persistent Objects Across Runtimes
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Challenges of Persistent Object Management Across Runtimes
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Unified Object Model and Type System
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Challenges of Persistent Object Management Across Runtimes
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Compatible with Automated Data Persistence Approach
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Compatible with Automated Data Persistence Approach
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The Persistent Overhead of Managing Persistent Objects
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Managing Persistent Objects in A Log-Structured Manner
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Managing Persistent Objects in A Log-Structured Manner
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Managing Persistent Objects in A Log-Structured Manner
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Managing Persistent Objects in A Log-Structured Manner

Object Field Index Table 1 [ log *)[ o ] ™ [ r ]_>[ log ]_>[ log ]

fid1 [ fid2 | fid3 | .. | fid ‘
[fid1 [ fia2 [fia3 [ .| fidn ] —— Tx3 [ log > log |—>{ log |—>{ log | Log Region

Valid ! :
Heap Header | Plass Region Root Table Bitmap | Object Region Log Region

System Platform Research Group at UIUC



Managing Persistent Objects in A Log-Structured Manner
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Managing Persistent Objects in A Log-Structured Manner
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Managing Persistent Objects in A Log-Structured Manner

Object Field Index Table

1 (s} > ios ] D2 (g }>{ o

| fid1 | fid2 | fid3 | ... | fidn |

DRAM = [ o _)[ o ]_)[ = ]_)[ o ] Log Region

Valid ! :
Heap Header | Plass Region Root Table Bitmap | Object Region | Log Region

Efficient and crash-safe persistent object management

System Platform Research Group at UIUC



Challenges of Persistent Object Management Across Runtimes

JavaScript

Unified Object Model

Unified Persistence Layer

Shared NVM Heap
NVM Device

Persistent and Crash-Safe Implementation

Efficient and Correct GC

System Platform Research Group at UIUC 10




Garbage Collection of UniHeap
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Garbage Collection of UniHeap
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Coordinated GC Across Managed Runtimes
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Put It All Together
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CPU: 24-core Intel 2nd Xeon
NVM: 8 * 128GB Intel Optane DC

Java: YCSB over QuickCached and H2
Python: Python Performance Benchmark Suite

JavaScript: JetStream?2
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Performance of Persistent Object Sharing
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UniHeap outperforms existing approach by 1.2x - 3.4x

System Platform Research Group at UIUC



Scalability of UniHeap

A B C D F

m1Runtime m2Runtimes m4 Runtimes 6 Runtimes m 8 Runtimes

Normalized TPS
- N w
= (0] N (0] w (0]

©
n

o

UniHeap can scale to support multiple managed runtimes.
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UniHeap Summary
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