SoftPM: Software Persistent Memory

Yuanchao Xu, We1 Xu, Kimberly Keeton, David E. Culler

Google

Another Way to Embrace Directly Addressable Persistence

Data Center

; ‘ Power _#
e Can NV-DRAM accelerate the adoption of HardPM?
vy Can NV-DRAM perform better than HardPM?

since the hardware revolution in 2014 T

* Lower performance than DRAM
* System software redesigns

* Application redesigns

N |||

NV-DRAM Limitation: Bounded Save Window

DRAM

Persistent Region

} NV-DRAM

Battery rack Save Window Size ~= Flush_time * Storage_BW

/[~60s data flush @ ~1GB/s

Applications are Architected with Persistence Models

4 N

Application

Necessary for
persistence

Old version Log region

Software Persistent Memory Methodology

Applications >[Dominate Persistence Models]

Agenda

* Application persistence models
* SoftPM design and implementation
* Multiple versions of Redis

e Fvaluation

Persistence Models

Static:

Applications fully manage the
fixed-size region

Append-only:

Applications consistently append
logs to the in-memory region

Large in-memory persistence:
Data flushed from cache to
memory 1s persistent

{ Volatile]
[Persistent]

 Application

(Logger J

Write Logsl

Buffer

Request A \ Return

rLog buffer

Free

Flushing

~

Buffers

Buffers

Actively Flush v

[[Storage

SSD

rApplication

[Logger J

Append Logs

Logs buffer

\ y,

Flush Periodically

(Storage |
SSD

(a) Static[1]

(b) Append-only|[2]

[1] Fast Databases with Fast Durability and Recovery Through Multicore Parallelism, Zheng et al. (OSDI 2014)
[2] Reids. https://redis.io/docs/manual/persistence/

Application

[Worker J

Read Write
Write Logs :
s '_\

In-memory
[Main Data ILOQS]

HardPM

(c) Large in-memory

SoftPM Static

Design

* Tag all allocated regions as save window
region

(Application

st/reclaim/flush
(Allocated SoftPM

pmalloc) T flush()
pfree()
v

U-SoftPM [Freelists]

mmap()
munmap()

¥ flush()

K-SoftPM | | SoftPM

Pages Storage

Power failures
>

Volatile

~\

J

{ Persistent with power

[

Persistent

SoftPM User-directed

Volatile
Application {
Characteristics of append-only persistence model { E————
S J
* Appended logs are not overwritten again (Full | Full | Writing) [S
malloc

. Efreeo 0 T pready()
Design
* Background flushing L-SoftPM [S pfree(| paemon Thread
* Users can deliver read-only hints to the " 00

SoftPM system mmap0

e Save window size control munmap() flush()

K-SoftPM | (Softpm | flush(
Pages

Power failures
—_.>

SoftPM Transparent

Design

* Dirtiness-aware save window size control

* User-transparent background flushing

[Volatile

N

[Persistent with power

Persistent

Application ld/st l

[Allocated SoftPM |
mmap()
munmap()

K-SoftPM

SoftPM pages

[Dirty | Clean| Dirty |

Softibm) Cold dirty pages

Dirty Page Daemon
Manager Thread

Power failures

— X

V\Update

Storage

SoftPM Transparent Implementation

Write l

-~

SoftPM pages are Trap
write-protected

Periodically

Dirty pages>
threashold

Custom page fault handler

Dirty _pages =

Ve T D Wait for finishing one page flush

1) Unset write-protected bit
2) Add this dirty page

.
-

Dirty page manager

Scan, clean and record all dirty pages’ reference bit

1) Flush LRU pages until dirty pages is smaller than the threshold
2) Set write-protected bit for flushed pages

N\

11

Multiple Versions of Redis

Volatile } [Persistent with power}

Persistent

)

[
[
Read ; l Write
Redis]
I
-\
Y ¥
Data (Log :)
Ke Value
[Keys IVaIuesJ (Ke;, I Value)
DRAM
Flush
A4
[[Storage)]
SSD

(a) Baseline

— — — » Read-related flow
—— Write-related flow

12

Multiple Versions of Redis

(

Volatile } [Persistent with powerJ

— — — 9 Read-related flow
Persistent] ——— Write-related flow
| .
Read v l Write
Redis)

AN

r Data Log w
[[Keys IVaIues] [((ﬁ:’; %:’/::32 %}

DRAM DRAM SoftPM
Flush Flush
v v
(Storage] (Storage)
SSD SSD

(a) Baseline

(b) SoftPM User-directed

I

I
' || Data Log i
Ke Value !
[Keys IValues] ((Ke); }Value% i

13

Multiple Versions of Redis

[Volatile] [Persistent with power] i B G o
{ Persistent] —— Write-related flow
Read i l Write
{ Redis]

Readi ‘Write
([Redis |

—

Data
[Keys IVaIues]

HardPM

DRAM

HardPM

Write l

(Key] Value pointer)

“Log (Persistent Ring buffer) }]

HardPM

Flush

{[Storage

SSD

)

(d) Hybrid

Data
[Keys IVaIuesJ

SoftPM

Flush

SSD

S
[[Storage]

(e) SoftPM Transparent

14

Summary of Multiple Versions of Redis

Schemes Persistency | Codebase OpUIIZEHOnS

Baseline (everysec) Per-second | Redis

Baseline (always) Per-record Redis

SoftPM-User-directed | Per-record Redis

HardPM Per-record Full PM Redis | PM data structures
PM data structures,

Hybrid Per-record pmem-Redis Pointer-based AOF,
Persistent ring buffer

SoftPM-Transparent Per-record Full PM Redis | PM data structures

15

Evaluation

Experiment setup
* 28-core Intel Xeon Platinum 8273CL@2.20GHz
e 6-channel HardPM, 6-channel DRAM and a SSD

* All server and client threads are running on different cores in one socket

Unlimited save window size

*Microbenchmark
*YCSB

Limited save window size (30 GB SoftPM data, 3G (10%)-30G(100%) save window)
*YCSB

Microbenchmark Evaluation

B Baseline (everysec) B Baseline (always) B SoftPM-User-directed B HardPM Hybrid Bl SoftPM-Transparent
__350 —
5 @ 1250
=3 o
2 250 2
= 5 750-
2150 a.
(@)}
= -
5 2 250
c 501 e
= =
1KB 4KB 16KB 64KB 1KB 4KB 16KB 64KB
Value Size Value Size
(@) Random Set with Pipeline=16 (b) Random Get with Pipeline=16

17

YCSB Evaluation

Baseline (everysec) -

=
H
wm

[
=
o

IS

o

\
\

Throughput (kops/s)
~
(9]

124 8 12 16 20 24
Number of Threads

(@) YCSB-A (update-heavy)

[
H
o

pd
o
o

()]
o

Throughput (kops/s)

N
o

124 8 12 16 20 24
Number of Threads

(d) YCSB-D (read-latest)

Baseline (always) -_

SoftPM-User-Directed =+ HardPM Hybrid === SoftPM-Transparent
¥ 145 L 145
a Q -4 —_~~'.'..-.-.-
) Y,
<110 =130
i 45 .’l—l—l‘._.—
o |
Q. &
5 15 o 75
3 -
o o
£ a0 £ a0l
E 32 8 12 16 20 24 124 8 12 16 20 24
Number of Threads Number of Threads
(b) YCSB-B (read-mostly) (c) YCSB-C (read-only)
110
~
7))
&
X 80
e
2
i 50'
[@)]
-
_g 201
= 8 12 16 20 24

Number of Threads

(e) YCSB-F (read-modify-write)

SoftPM Transparent Improves 38%-93% throughput over the Hybrid .

YCSB Evaluation with Limited Save window

== SoftPM-User-directed (Unlimited) = = SoftPM-User-directed (Limited) - SoftPM-Transparent (Unlimited) =+ SoftPM-Transparent (Limited)

v @ 145 B 145
& 140 /'N—‘r kY, e N @ - "-——'\ .« " -
8_ ‘/‘ 8— ﬁ__" 8— '(
= o**__{..._...g""..._—-a.., =< A35 X 135
= s 5 5
o 125" = 125
= = 3
o o o
= 120 < 115 £ 115
3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30 ' 7255 5 7.5 10 12.5 15 17.5 20 22.5 25
Save Window Size (GB) Save Window Size (GB) Save Window Size (GB)
(@) YCSB-A (update-heavy) (b) YCSB-B (read-mostly) (c) YCSB-C (read-only)
,—.——l—&-— .
130 . — 98 ’-A

e

-
e e e e T R ey

82 1
3 6 9 12 15 18 21 24 27 30 25 5 7.5 10 12.5 15 17.5 20 22.5 25
Save Window Size (GB) Save Window Size (GB)
(d) YCSB-D (read-latest) (e) YCSB-F (read-modify-write)

SoftPM incurs at most 9% overhead with 10% save window size - .

Throughput (kops/s)
S
[l
I
[

Throughput (kops/s)
o S

Conclusion

SoftPM is potentially available using technology already provisioned in data
centers today

SoftPM improves 38%-93% throughput over the well-optimized Hybrid (DRAM
and HardPM) versions.

* Real DRAM performance memory

* Background flushing

* Cleaner designs

SoftPM also sets the performance bar that future HardPM and its ecosystem
will need to beat.

