
SoftPM: Software Persistent Memory

Yuanchao Xu, Wei Xu, Kimberly Keeton, David E. Culler

1



2

Intel Optane DC Persistent memory

HardPM hasn’t become ubiquitous in data centers 
since the hardware revolution in 2014

Another Way to Embrace Directly Addressable Persistence

• Lower performance than DRAM

• System software redesigns

• Application redesigns

Battery rack

Data Center

Power
NV-DRAM 

Directly addressable persistence
NV-DRAM has:

DRAM performance

Limited capacity *

Can NV-DRAM accelerate the adoption of HardPM?
Can NV-DRAM perform better than HardPM?



3

NV-DRAM Limitation: Bounded Save Window

Battery rack

DRAM

Power

NV-DRAM 

~60s data flush @ ~1GB/s

Storage

Save Window Size ~= Flush_time * Storage_BW

Persistent Region



4

Applications are Architected with Persistence Models

Application
Data region Log region Necessary for 

persistence

Storage
Old version 
of data region

Logs

Flush

Old version

Replay



SoftPM system

5

Software Persistent Memory Methodology

NV-DRAM 

Storage 

Applications Dominate Persistence Models

Interfaces



Agenda

• Application persistence models
• SoftPM design and implementation
• Multiple versions of Redis
• Evaluation

6



7[1] Fast Databases with Fast Durability and Recovery Through Multicore Parallelism, Zheng et al. (OSDI 2014)

Persistence Models

Static:
Applications fully manage the 
fixed-size region

Append-only:
Applications consistently append 
logs to the in-memory region

Large in-memory persistence:
Data flushed from cache to 
memory is persistent

(a) Static[1] (b) Append-only[2] (c) Large in-memory

[2] Reids. https://redis.io/docs/manual/persistence/



8

SoftPM Static

Design

• Tag all allocated regions as save window 
region

Application
st/reclaim/flush

Logger

Allocated SoftPM

Freelists

SoftPM 
Pages

U-SoftPM

K-SoftPM

pmalloc()
pfree()

mmap()
munmap()

Storage

flush()

flush()

Power failures

Volatile

Persistent

Persistent with power



9

SoftPM User-directed

Characteristics of append-only persistence model

• Appended logs are not overwritten again

U-SoftPM Freelists

K-SoftPM SoftPM 
Pages

Daemon Thread

pmalloc()
pfree()

mmap()
munmap()

Application
st

Full Full Writing

Logger

pready()

Storage

flush()

flush()

Power failures

Design
• Background flushing
• Users can deliver read-only hints to the 

SoftPM system
• Save window size control

pfree()

Volatile

Persistent

Persistent with power



10

SoftPM Transparent
Volatile

Persistent

Persistent with powerDesign
• Dirtiness-aware save window size control
• User-transparent background flushing

mmap()
munmap()

Application

K-SoftPM SoftPM pages

Dirty Clean Dirty

ld/st

Allocated SoftPM

SoftPM 
Dirty Page 
Manager

Daemon 
Thread

Cold dirty pages

Storage
Flush

Update
Power failures



11

SoftPM Transparent Implementation

SoftPM pages are 
write-protected

Write Custom page fault handler
Dirty_pages = 
save_window? Wait for finishing one page flush

Yes

No
1) Unset write-protected bit
2) Add this dirty page

Dirty page manager
Scan, clean and record all dirty pages’ reference bit 

Periodically 

Dirty pages> 
threashold

1) Flush LRU pages until dirty pages is smaller than the threshold
2) Set write-protected bit for flushed pages

Trap 

Trigger 



(b) SoftPM User-directed
12

Multiple Versions of Redis

(a) Baseline



(b) SoftPM User-directed
13

Multiple Versions of Redis

(a) Baseline



14

Multiple Versions of Redis

HardPM

Redis

DRAM

Data
Keys

Data
Value

Read Write

Write

HardPM

Log (Persistent Ring buffer)
Key Value pointer

SSD
Storage

Flush

(c) HardPM (d) Hybrid (e) SoftPM Transparent



15

Summary of Multiple Versions of Redis



16

Evaluation

Experiment setup 
• 28-core Intel Xeon Platinum 8273CL@2.20GHz
• 6-channel HardPM, 6-channel DRAM and a SSD
• All server and client threads are running on different cores in one socket

Unlimited save window size
•Microbenchmark
•YCSB

Limited save window size (30 GB SoftPM data, 3G (10%)-30G(100%) save window)
•YCSB



17

Microbenchmark Evaluation

SoftPM Transparent Improves 7%-88% throughput over the Hybrid



18

YCSB Evaluation

SoftPM Transparent Improves 38%-93% throughput over the Hybrid



19

YCSB Evaluation with Limited Save window

SoftPM incurs at most 9% overhead with 10% save window size



20

Conclusion

SoftPM is potentially available using technology already provisioned in data 
centers today

SoftPM improves 38%-93% throughput over the well-optimized Hybrid (DRAM 
and HardPM) versions.
• Real DRAM performance memory
• Background flushing
• Cleaner designs 

SoftPM also sets the performance bar that future HardPM and its ecosystem 
will need to beat. 


