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Another Way to Embrace Directly Addressable Persistence

Data Center

; ‘ Power _#
e Can NV-DRAM accelerate the adoption of HardPM?
vy Can NV-DRAM perform better than HardPM?

since the hardware revolution in 2014 T

* Lower performance than DRAM
* System software redesigns

* Application redesigns
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NV-DRAM Limitation: Bounded Save Window
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/[ ~60s data flush @ ~1GB/s




Applications are Architected with Persistence Models
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Software Persistent Memory Methodology

Applications >[ Dominate Persistence Models ]




Agenda

* Application persistence models
* SoftPM design and implementation
* Multiple versions of Redis

e Fvaluation



Persistence Models

Static:

Applications fully manage the
fixed-size region

Append-only:

Applications consistently append
logs to the in-memory region

Large in-memory persistence:
Data flushed from cache to
memory 1s persistent
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[1] Fast Databases with Fast Durability and Recovery Through Multicore Parallelism, Zheng et al. (OSDI 2014)
[2] Reids. https://redis.io/docs/manual/persistence/
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SoftPM Static

Design

* Tag all allocated regions as save window
region
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SoftPM User-directed
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SoftPM Transparent

Design

* Dirtiness-aware save window size control

* User-transparent background flushing
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SoftPM Transparent Implementation

Write l
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SoftPM pages are Trap
write-protected

Periodically

Dirty pages>
threashold

Custom page fault handler

Dirty _pages =

Ve T D Wait for finishing one page flush

1) Unset write-protected bit
2) Add this dirty page

.
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Dirty page manager

Scan, clean and record all dirty pages’ reference bit

1) Flush LRU pages until dirty pages is smaller than the threshold
2) Set write-protected bit for flushed pages
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Multiple Versions of Redis
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Multiple Versions of Redis
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Multiple Versions of Redis
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Summary of Multiple Versions of Redis

Schemes Persistency | Codebase OpUIIZEHOnS

Baseline (everysec) Per-second | Redis

Baseline (always) Per-record Redis

SoftPM-User-directed | Per-record Redis

HardPM Per-record Full PM Redis | PM data structures
PM data structures,

Hybrid Per-record pmem-Redis Pointer-based AOF,
Persistent ring buffer

SoftPM-Transparent Per-record Full PM Redis | PM data structures
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Evaluation

Experiment setup
* 28-core Intel Xeon Platinum 8273CL@2.20GHz
e 6-channel HardPM, 6-channel DRAM and a SSD

* All server and client threads are running on different cores in one socket

Unlimited save window size

*Microbenchmark
*YCSB

Limited save window size (30 GB SoftPM data, 3G (10%)-30G(100%) save window)
*YCSB



Microbenchmark Evaluation
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YCSB Evaluation
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SoftPM Transparent Improves 38%-93% throughput over the Hybrid .



YCSB Evaluation with Limited Save window
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Conclusion

SoftPM is potentially available using technology already provisioned in data
centers today

SoftPM improves 38%-93% throughput over the well-optimized Hybrid (DRAM
and HardPM) versions.

* Real DRAM performance memory

* Background flushing

* Cleaner designs

SoftPM also sets the performance bar that future HardPM and its ecosystem
will need to beat.



