

Circadian Rhythm: A Candidate for Achieving Everlasting Flash Memories

*M. Ceylan Morgul, ^Xinfei Guo and *Mircea Stan

*University of Virginia, Charlottesville, VA, USA

^University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai, China

{ceylan, mircea}@virginia.edu; xinfei.guo@sjtu.edu.cn

This work was supported in part by Semiconductor Research Corporation (SRC) under

the Center for Research on Intelligent Storage and Processing in-memory (CRISP)

Reliability of FLASH

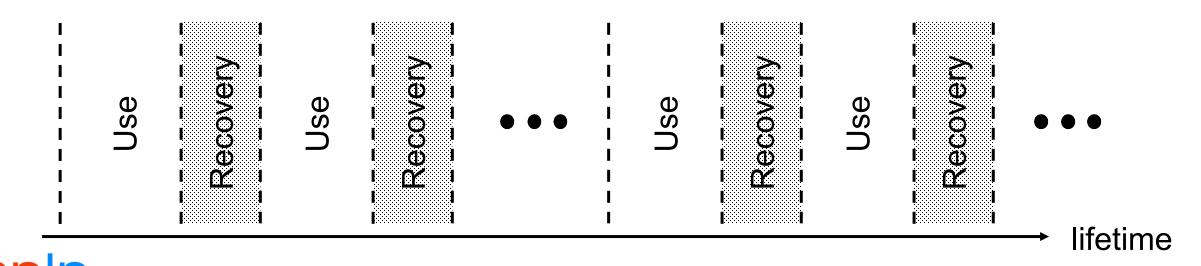
- Flash memories: dense, non-volatile, low latency, random access I/O
- Endurance limitation: wear-out by using (Program/Erase cycling)
- Reliability and Sustainability are important now more than ever

Solutio

SLC: 30-160 us	SLC: 100k P/E	QLC: 4 & 16
QLC: 140-3102 us	QLC: 1k P/E	SLC: 1 & 2
Low Latency	Endurance (Program/Erase)	Density (bits/cell & state #)

- <u>Hybrid SSDs</u> are proposed
 - Along with <u>System-level</u> mitigation techniques (over-provisioning, wear-leveling, read-retry, etc.)
- in Device-level: Passive and Accelerated Recovery for temporary wearout

<u>Circadian Rhythm of Flash</u>: preventing permanent wearout

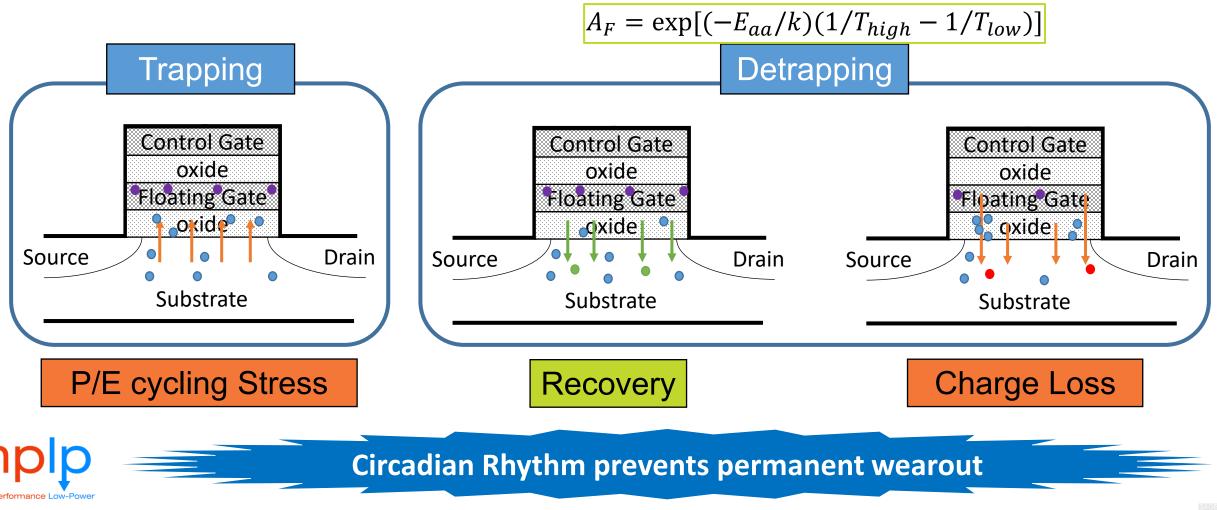

Yoo, Sangjin, and Dongkun Shin. "Reinforcement Learning-Based {SLC} Cache Technique for Enhancing {SSD} Write Performance." 12th {USENIX} Workshop on Hot Topics in Storage and File Systems (HotStorage 20). 2020.

Circadian Rhythm of Flash

Circadian Rhythm of Human

• Sleep during the day not only at weekends

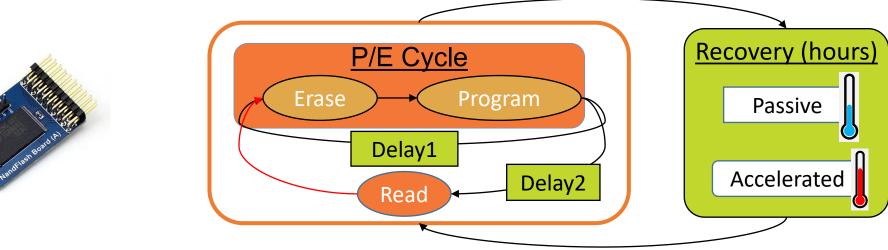
<u>Circadian Rhythm for BTI and EM wearout*</u> <u>Circadian Rhythm of Flash</u>



*Guo, Xinfei, and Mircea R. Stan. "Deep Healing: Ease the BTI and EM Wearout Crisis by Activating Recovery." 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W). IEEE, 2017.

Use (Stress) and Recovery Mechanisms

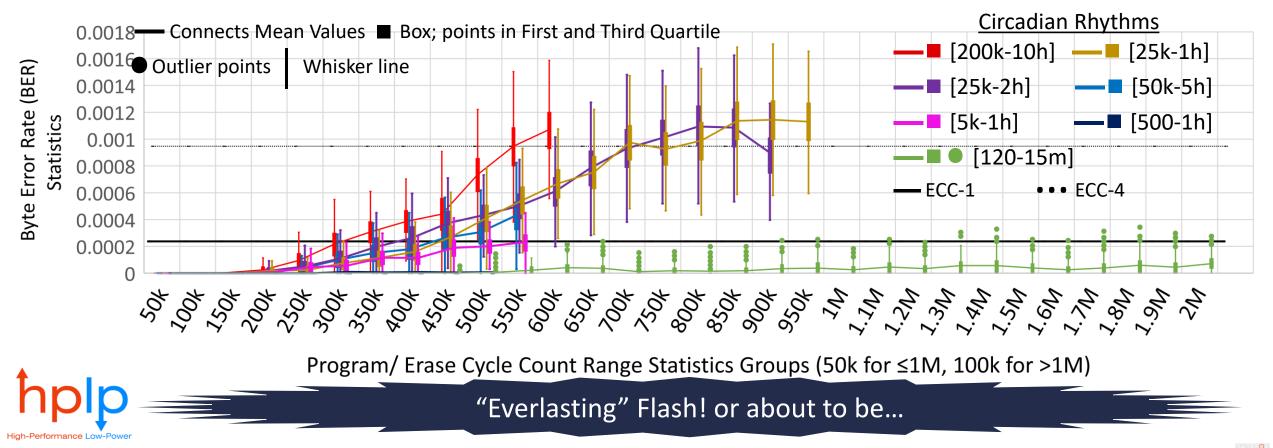
4


- Electrons are forcibly moved during Programmed and Erase operations
- <u>Recovery (detrapping)</u> efficient for temporary traps.

Experimental Setup of Circadian Rhythms

- 21nm SLC NAND flash floating gate transistor
- no-ECC during experiments and no read-retry
- 20 P/E Cycles + 1 Read
- temperature: 95 °C
- 7 different rhythms

ECC-1: 1 bit / (512+16 Byte) ECC-4: 4 bit / (512+16 Byte) $t_{delay1} = 1.5$ s (dwell time) $t_{delay2} = 3$ s (retention time)



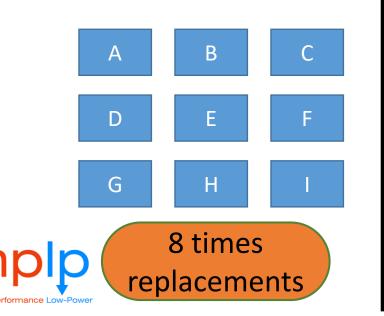
M. C. Morgul, M. N. Sakib and M. Stan, **Reliable Processing in Flash with High Temperature.** The IEEE International Integrated Reliability Workshop (IIRW) 2021, October 4-29, 2021 https://www.waveshare.com/nandflash-board-a.htm

Circadian Rhythm on Prevention of Permanent Wearout

- The rhythm of [120-15m] (i.e., 120 P/E cycles followed by 15 min of recovery) , compared to [200k-10h].
 - increases lifetime with ECC-1 2.9x; but only 60 times exceed ECC-1 till 1.95M, which actually means 9x improvement
 - <u>decreases</u> the slope of linear fit <u>by 70x</u> flattens the trend

Circadian Rhythm on Prevention of Permanent Wearout

• The rhythm of [120-15m], compared to [200k-10h].


High-Performance Low-Poy

 increases lifetime with ECC-1 2.9x; but only 60 times exceed ECC-1 till 1.95M, which actually means 9x improvement

Circadian Rhythm	BER = ECC-1	BER = ECC-1 Lifetime Improvement		Slope in Linear Fit		
200k-10h	223k	baseline	1.2e-9	1x		
25k-1h	245k	9.8%	1.6e-9	1.27x		
25k-2h	230k	3.1%	1.6e-9	1.27x		
50k-5h	264k	18.3%	8.5e-10	2.34x		
5k-1h	294k	31.8%	5.1e-10	3.89x		
500-1h	w.r.t. values @482k	285.6%	2.2e-11	90.45x		
120-15m	858k	284.7%	2.7e-11	73.70x		
This is translated into 9x						

Worst Case: High Utilization Demanding Application

- An application that requires to access all the bits (capacity) at any time
 - Tremendous amount of parallelism: as high as number of bits
 - Example: Processing in-memory
- With just <u>4x (5-1) more capacity</u>, <u>8x (9-1) more lifetime</u> is gained [120-15m]
- Overall more than <u>2x sustainability improvement</u> when you consider total cost of ownership

0	Time:	3.75m	3.75m	3.75m	3.75m	3.75m
1	Block ₀	Use	Recov	Recov	Recov	Recov
	Block ₁	Recov	Use	Recov	Recov	Recov
2	Block ₂	Recov	Recov	Use	Recov	Recov
3	Block ₃	Recov	Recov	Recov	Use	Recov
4	Block ₄	Recov	Recov	Recov	Recov	Use
9x lifetime but 4x more capacity						

Summary

- Existing recovery methods at **the device-level** left the **irreversible** component of wearout **uncheck**
- Circadian Rhythm prevents the occurrence of most of the permanent wearouts
- Experimental results of SLC floating gate shows that **[120-15m] Circadian Rhythm** increases lifetime of flash memory by **9x**
- Circadian Rhythm improves **sustainability** at least **2x** even in the hypothetical worst-case

Discussion and Future Work

- Circadian Rhythm is the key to unlock "everlasting" flash memories
- Study* shows Circadian Rhythm (CR) is up to **100% beneficial** for **Bias Temperature Instability** wearout of FETs and **ElectromMigration**
- Therefore, Circadian Rhythm recovery approach can be generalized to all electronics
 - Such as to other non-volatile memories; ReRAM, FeRAM, memristors etc.

Future works:

- Repeating experiments for other flash technologies (i.e. charge-trap, MLC/TLC/QLC, 3D etc.)
- Augmenting FTL (Flash Transition Layer) that exploits CR
- Developing al-in-one approach that synchronizes CR for a complete system

*Guo, Xinfei, and Mircea R. Stan. "Deep Healing: Ease the BTI and EM Wearout Crisis by Activating Recovery." 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W). IEEE, 2017.

Circadian Rhythm: A Candidate for Achieving Everlasting Flash Memories

*M. Ceylan Morgul, ^Xinfei Guo and *Mircea Stan

*University of Virginia, Charlottesville, VA, USA

^University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai, China

{ceylan, mircea}@virginia.edu; xinfei.guo@sjtu.edu.cn

This work was supported in part by Semiconductor Research Corporation (SRC) under

the Center for Research on Intelligent Storage and Processing in-memory (CRISP)

