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I. INTRODUCTION

Emerging Non-Volatile Memories (NVMs) [1] have low
latency and data persistence capability. Therefore, they provide
an opportunity to merge storage systems and main memory
into a single concept. Such features allow them to be used
as a byte-addressable persistent memory that can be directly
accessed through Load/Store commands. In a legacy storage
device (e.g., Solid State Drives of SSDs), the system software
interrupts the file access, and pages are copied from the device
into a software-managed page cache structure. The additional
system software overhead for copying pages is negligible in
this case compared to the access latency of current storage
devices. However, such latency can easily dominate the access
latency of emerging NVM devices. Due to their impressive
speed of loading and storing data, it is desirable to remove as
much system software overhead as possible from the load/store
path. Additionally, the emerging NVMs can be accessed in
finer granularity, and there is no need to copy pages elsewhere;
they can be accessed directly using load and store operation.
Modern Operating Systems support such direct access (DAX
[2]) support for byte-addressable persistent memories, allow-
ing us to utilize the full potential of such memories. Figure 1
illustrates the file I/O mechanism in the DAX-based filesystem
and conventional filesystem. While DAX allows fast access
to files, there is a fundamental challenge for using direct-
access with NVM-based filesystems. Traditionally, filesystem
encryption is implemented in the system software layer, which
relies on the operating system to have control over file access.
Such encryption method encrypts pages before evicting them
from the page cache and decrypts them when copied to the
page cache. Unfortunately, DAX completely removes such
interactions with the page cache. Therefore, it is challenging
to implement filesystem encryption while maintaining direct
access to NVMs at the same time. In this work!, we explore
a low-cost solution to achieve transparent and fine-grained
encryption for DAX files within the memory controller. To
the best of our knowledge, this work is the first to propose
any filesystem-level encryption for DAX. Our simulation re-
sults show that our scheme (FsEncr) incurs only 3.8% extra
execution time overhead for several real-world benchmarks.
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Fig. 1: Accessing files in conventional vs DAX-based filesys-
tems.

(b) Accessing DAX-based files.

ext4-dax, no encryption E3EGD
eCryptfs I

NORMALIZED SLOWDOWN
o= n W ko,

Fig. 2: Overheads of software based filesystem encryption.

II. MOTIVATION

Current options for encrypting filesystem in NVMs are to
either use software-based encryption (high overhead) or to
modify applications to enable file encryption (impractical).
To obtain more insights on this matter, we have simulated
eCryptfs [3] over emulated persistent memory region (using
memmap) in GemS5 [4] full-system simulation. We then ob-
serve the performance implications compared to plain ext4-
dax. The overheads clearly show the slowdown caused by
having a software level encryption mechanism. As shown in
Figure 2, on average, the software encryption incurs 2.7x
slowdown for the benchmarks we have tested to compare
Direct Access with software encryption. This leaves only
two options for NVM operated in a direct access manner;
no filesystem-level encryption, or no performance benefit for
using DAX. Therefore, it is vital to have a method that can
combine the benefit of both filesystem-level encryption and
direct access.



III. DESIGN

We allow the OS to communicate to the memory controller
by writing to specific memory-mapped I/O registers on file
creation and page faults. Whenever a new encrypted file is
created, the kernel sends the key and associated File ID and
Group ID to the memory controller. The memory controller
stores the mapping inside a hardware structure named Open
Tunnel Table (OTT). After opening the file, every first access
to a page will trigger a page fault, and corresponding page
table entry will be created. During each page fault, one
specific bit (DF-bit, or DAX-file bit) is set in the
physical address to identify encrypted file requests within the
memory controller. Additionally, for DAX files, our scheme
communicates to the memory controller to store file ID and
Group ID within the file encryption metadata on every page
fault.
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Fig. 3: Encryption Metadata and OTT Table.

Figure 3 shows the encryption metadata organization and
Figure 4 shows the read and write operation to enable trans-
parent filesystem encryption. The memory controller identifies
the encrypted DAX files from the request’s physical address
by extracting the DF-bit. If the request is only a typical
memory request, only one level of encryption is done using
the memory encryption key and Memory Encryption Counter
Block (MECB). If the request is for encrypted DAX files,
one additional level of encryption is done using a file key and
File Encryption Counter Block (FECB). We use counter mode
encryption where counters (MECB and FECB) are organized
as split-counter [5] organization. FECB Block stores the File
ID and Group ID along with the counters. Each MECB block
in memory is followed by a FECB block. Therefore, if the
request is identified to be a DAX file request, FECB is fetched,
and the corresponding key from the OTT is searched using File
ID and Group ID, and encryption/decryption is performed.

IV. METHODOLOGY AND RESULTS

We use GemS5 simulator [4] in its full-system mode to
evaluate our scheme. We use a modified version of Linux
Kernel 4.14 and a disk image based on Ubuntu 16.04 in
our simulation. The kernel was initialized by configuring
the 4GB starting from 12GB as a persistent region, using
memmap=4G!12G. The persistent space is formatted with
DAX-enabled ext4 filesystem, then mounted for use with
persistent applications and libraries.

We use Whisper [6] and PMEMKYV [7] benchmarks to
measure the performance of our scheme. The PMEMKV-S
benchmarks are configured to access 64B data, and PMEMKV-
L benchmarks are configured to access 4096B on each query.
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Fig. 4: FsEncr Read and Write Operation.

Figure 5 shows the slowdown normalized to the baseline ext4-
dax with memory encryption only. On average, our scheme
incurs only a 3.8% slowdown.
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Fig. 5: Slowdown normalized to the baseline.

V. CONCLUSION

Direct Access (DAX) allows faster access to files for emerg-
ing NVMs. However, such feature makes it difficult to ensure
filesystem security. In this work, we present a filesystem
encryption scheme for emerging NVMs that can be enabled
alongside direct-access with minimal changes. Our method
offers the flexibility of DAX while maintaining file security
with only 3.8% slowdown.
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