HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM

Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter
DRAM + NVM tiered memory

- 8x capacity
- 2x latency
- Asymmetric read/write bandwidth
- High overhead for small accesses
Hardware tiered memory

Example: Intel Optane Memory Mode

- No OS support needed
- Low overhead
- No visibility into apps
- Limited to simple management techniques
Existing software tiered memory

Examples: HeteroOS [ISCA ‘17], Nimble Page Management [ASPLOS ‘19]

- Insights into applications
- Supports complex policies

Evaluated only on emulated NVM:
- Does not scale to NVM capacity
 - Due to page table overheads
- No support for asymmetric read/write bandwidth
- Limited flexibility
Why not access/dirty bits?

- Not scalable
- Takes seconds to scan large memories with base pages
- Overhead of TLB shootdowns to clear bits
HeMem:

Scalable software tiered memory management system designed for real NVM

• Design principles:
 • Asynchronous memory access sampling with CPU performance counters
 • Asynchronous memory migration with DMA offload
 • Data scalability awareness
 • Focus on asymmetric NVM bandwidth
 • Flexibility
PEBS memory access sampling

- PEBS: processor event-based sampling
 - Supported in modern Intel processors
- Processor records samples of load/store virtual memory address
 - Records are stored in a memory buffer
- We measure DRAM loads, NVM loads, and all stores
 - Instead of using page table access/dirty bits
- Sampling 0.02% of all memory accesses provides sufficient fidelity
Asynchronous hot/cold classification

PEBS buffer:

- Sample_1
- Sample_2
...

Batch

Sample 0.02% of memory accesses

CPU Counters

DRAM

HeMem PEBS thread

- Hot
- Cold

NVM

Hot memory page

Cold memory page
Asynchronous memory migration

- **DRAM**
 - Hot
 - WP
 - Cold
 - WP

- **NVM**
 - Hot
 - WP
 - Cold

DMA

- **DMA Req:**
 - Source: VA_5, 2MB
 - Destination: VA_6, 2MB

HeMem policy thread
Optimize for real NVM

- Limit writes to NVM to avoid write bandwidth bottleneck
 - Migrate and keep frequently written pages to DRAM

- Keep small objects in DRAM
 - Avoid the small random reads from NVM that suffer overheads
 - Small, ephemeral objects remain in DRAM
Flexible user space mechanisms

- HeMem is implemented as a user-level library
 - Can be modified to better suit applications
 - Can more closely integrate with managed runtimes to further optimize
 - Userfaultfd for handling of page and write-protection faults
- Monitors application allocations and access patterns with low overhead
 - Intercepts mmap calls to learn size of allocations
 - PEBS for access patterns
- Works with unmodified applications
Evaluation
Evaluation setup

- Cascade Lake-SP w/ 24 cores, 192 GB DRAM, 768 GB NVM
 - All DIMMs populated, leveraging all 6 memory channels

- Comparisons:
 - Intel Memory Mode
 - Linux nimble tiered memory management [ASPLOS ‘19]
Hot set identification

GUPS microbenchmark with hot set (512 GB working set)
8 byte accesses, non-contiguous hot set

2X
Dynamic hot set identification

GUPS with a 512 GB working set and a 16 GB hot set
At time $t=150$, shift hot set over by 4 GB
FlexKVS key-value store throughput

4KB value size, 90% GET, 10% SET, 20% hot keys accessed 90% of time

![Graph showing throughput for different storage sizes and systems (HeMem, MM, Nimble, NVM)]
GAPbs execution time

Betweenness Centrality algorithm on graph with 2^{29} vertices

- MM
- Nimble
- HeMem - PT Async
- HeMem - PEBS

HeMem with PEBS makes 10x fewer writes to NVM
Summary

• Tiered memory systems need to support real NVM
 • Need to scale to large capacities
 • Need to support unique NVM performance features

• **HeMem**: redesign of tiered memory management with real NVM
 • Sampling-based memory access monitoring without page tables
 • Asynchronous memory migration in batches with DMA offload
 • Accurately distinguishes hot from cold memory

• Up to 1.6x GAPbs speedup, 2x GUPS, 10x fewer NVM writes

Source code: https://bitbucket.org/ajaustin/hemem/src/sosp-submission/