
HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM

Amanda Raybuck, Tim Stamler, Wei Zhang1, Mattan Erez, Simon Peter2
University of Texas at Austin, 1Microsoft, 2University of Washington

1 INTRODUCTION
Systems with hybrid DRAM/non-volatile memory are now
commercially available, such as with Intel’s Optane DC non-
volatile memory (NVM) modules that can share the memory
bus with DRAM [1]. While NVM offers 8× higher capacity
per module compared to DRAM, it comes at the cost of up
to 7× lower bandwidth and twice the latency if not managed
well. Tiered main memory management systems using hy-
brid DRAM/NVM need to balance these tradeoffs to provide
efficient tiered memory to applications.

Lag in OS support for tiered memory (e.g., Linux so far has
no official tiered memory support beyond swapping) has led
hardware designers to provide tiered memory completely in
hardware [3]. This approach has the benefit that it does not
require OS support to manage tiered memories, but it has lit-
tle visibility into the high-level requirements of applications
using tiered memory and it must rely on simple memory
tracking techniques that can be efficiently implemented in
hardware. Research in OS-based tiered memory [4, 7] was
evaluated with emulated NVM and does not capture the
performance characteristics of commercially available NVM.
Existing OS-based systems have overheads that prevent them
from scaling to the capacity of commercially available NVM.
Existing systems also do not support asymmetric read/write
memory performance and have limited flexibility to adapt
to the diverse needs of big data applications.

HeMem [6] is an user-level library memory management
system that dynamically manages tiered memory without
the CPU overhead of page access bit tracking, associated
TLB shootdowns, and memory copies, but with advanced
policy support for various memory access and allocation
patterns. HeMem uses hardware performance counters to
asynchronously sample memory access instructions to dis-
tinguish hot from cold memory pages for better scalability
compared to traditional page access bit tracking approaches.
HeMem supports asymmetric NVM bandwidth by prioritiz-
ing frequently written pages to DRAM. Finally, for flexibility,
HeMem is implemented as a user-level library.

2 HEMEM DESIGN
HeMem relies on a number of techniques to efficiently man-
age tiered memory.

Scalable memory access measurement via PEBS.. To
identify memory access patterns in a way that scales with
memory size, HeMem uses a Processor Event-Based Sam-
pling (PEBS) based approach instead of scanning page tables.

We configure PEBS to measure DRAM loads, NVM loads,
and all stores. HeMem samples memory access via a separate
PEBS thread that continuously reads the PEBS buffer and
updates page statistics when appropriate. When a sample
is ready, HeMem examines the virtual address target of the
sampled instruction and determines which huge page the
address falls on. HeMem tracks and manages memory at
huge page granularity.

The PEBS thread classifies data as hot or cold by organiz-
ing tracked pages into separate hot and cold lists for DRAM
and NVM based on the PEBS samples. HeMem uses separate
counters for reads and writes, as identified by the sample.
A page is considered hot and placed in HeMem’s DRAM or
NVM hot list once a threshold number of 8 load or 4 store
accesses are recorded to it, which we determined experi-
mentally. A page that exceeds the store access threshold
is considered a write-heavy page. To maintain freshness of
HeMem’s estimation of the hot set, HeMem will regularly
cool pages by halving the access counts.

NVM aware policies. HeMem allocates DRAM if avail-
able by removing a page from the DRAM free list. This allows
ephemeral data to remain in fast memory. When running out
of DRAM, HeMem simply allocates from NVM and relies on
its PEBS thread to identify when pages in NVM become hot
and should be migrated to DRAM. HeMem determines the
size of memory ranges from intercepted memory allocation
calls. Small allocations are forwarded to the Linux kernel
to handle. Large allocations are handled by HeMem. In this
way, small memory objects automatically remain in DRAM.
NVM is accessed more efficiently at larger granularities, so
keeping small ranges in DRAM yields better performance.

HeMem’s migration policy scans the DRAM cold list and
the NVM hot list provided by the PEBS thread and migrates
pages among them. The policy thread runs every 10 ms.
Write-heavy pages are given higher priority for migration
to DRAM than read-heavy pages due to NVM having lower
write than read performance.

Efficient user-spacemechanisms. HeMemmanages tiered
memory in a userspace library. Placing tiered memory man-
agement decisions in a library allows HeMem to efficiently
obtain runtime-level information aboutmemory use from the
application with minimal overhead. HeMem handles page
faults using userfaultfd [2]. When HeMem intercepts mem-
ory allocation calls, it registers the virtual address range with
userfaultfd, allowing it to receive page and write-protection
faults on this range. In the event of a page missing fault,

 0

 0.04

 0.08

 0.12

DRAM 0 50 100 150 200 250

G
U

P
S

Hot set size (GB)

HeMem
MM

NVM
Nimble

Figure 1: GUPS with different hot set sizes (512 GB
working set; higher is better).

HeMem will map a zero-filled page from DRAM or NVM
according to its policy at the faulting address and then wake
the faulting application thread. For a write-protection fault,
if the page is currently undergoing migration, HeMem sim-
ply waits until the migration is complete before waking the
faulting thread.

When HeMem decides to migrate a page, it first uses user-
faultfd to mark the page as write-protected. This allows reads
to proceed to the page while under migration, but any writes
to the page must wait until the migration is complete. Once
the migration completes, page access rights are restored. If
available, HeMem offloads the data migration to an I/OAT
DMA engine [5], freeing the CPU of this task. If a DMA
engine is not available, HeMem uses 4 additional threads to
copy a page in parallel, akin to Nimble [7].

3 EVALUATION
HeMem is implemented in 4,177 lines of C code for the
HeMem library as well as 1,337 lines of C code modified
in the Linux kernel to add support for userfaultfd handling
of DAX files and DMA. We run our evaluation on a sin-
gle socket of a dual-socket Intel Cascade Lake-SP system
running at 2.2GHz with 24 cores per socket and a 100 GbE
ConnectX-5 Mellanox NIC. Each socket has 192 GB of DDR4
DRAM and 768 GB of Intel Optane DC NVM. To leverage
all 6 memory channels, there are 6 DIMMs of DRAM and
NVM per socket. The machine runs Debian 10.9 with Linux
kernel version 5.1.0rc4. We compare HeMem to Intel Optane
DC memory mode (hardware tiered memory management),
as well as the Linux Nimble tiered memory management
system [7].
We use GUPS as a microbenchmark to evaluate the be-

havior of the different tiered memory management systems.
GUPS executes parallel read-modify-write operations to fixed
size objects in its working set and measures the giga update
operations per second (GUPS) it performs. Each thread has
its own exclusive working set partition that it accesses with-
out synchronization. We run GUPS with 16 threads, each
performing 1 billion updates (16 billion updates in aggre-
gate) to 8-byte objects. We modify GUPS to make a portion

of each thread’s objects hot (frequently accessed): 90% of the
operations of each thread uniformly access its hot objects,
while the remaining 10% of operations uniformly access the
thread’s entire working set. After a warm-up round, we run
the benchmark 3 times and report the average GUPS in Fig-
ure 1.
As long as the hot set fits into DRAM, HeMem identifies

it and ensures that it remains in DRAM. HeMem occasion-
ally migrates cold data between DRAM and NVM, incurring
minimal overhead. MM performance suffers as the GUPS hot
set size approaches the capacity of DRAM. As the hot set
grows, MM’s direct-mapped caching approach exhibits more
misses and more of the hot data is being pushed to NVM.
HeMem performs up to 2× better with increasing hot set size.
Nimble suffers from high overhead due to sequential scan
and migration. Even when the hot set fits in DRAM, Nimble
achieves only 25% of the GUPS of MM. When the hot set
does not fit in DRAM, the performance of all configurations
converges. HeMem identifies this case and stops migration.

4 CONCLUSION
HeMem is a software-based tiered memory management
system designed from scratch for commercially available
NVM. HeMem dynamically manages tiered memory without
the CPU overhead of page access bit tracking, associated TLB
shootdowns, and memory copies, but with advanced policy
support for various memory access and allocation patterns.

REFERENCES
[1] Intel Optane DC Persistent Memory, March 2019. http://www.intel.

com/optanedcpersistentmemory.
[2] userfaultfd(2). http://man7.org/linux/man-pages/man2/userfaultfd.2.

html, February 2020.
[3] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance mea-
surements of the Intel Optane DC Persistent Memory Module, April
2019. https://arxiv.org/abs/1903.05714v2.

[4] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan.
HeteroOS: OS design for heterogeneous memory management in data-
center. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17. Association for Computing Machinery,
2017.

[5] Thai Le, Jonathan Stern, and Stephen Briscoe. Fast memcpy with SPDK
and Intel I/OAT DMA engine, April 2017. https://software.intel.com/en-
us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.

[6] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. Hemem: Scalable tieredmemorymanagement for big data applica-
tions and real NVM. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21. Association for Computing
Machinery, 2021.

[7] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Nim-
ble page management for tiered memory systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’19. Association
for Computing Machinery, 2019.

http://www.intel.com/optanedcpersistentmemory
http://www.intel.com/optanedcpersistentmemory
http://man7.org/linux/man-pages/man2/userfaultfd.2.html
http://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://arxiv.org/abs/1903.05714v2
https://software.intel.com/en-us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine
https://software.intel.com/en-us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine

	1 Introduction
	2 HeMem Design
	3 Evaluation
	4 Conclusion
	References

