
Linear-Time Encoders for Two-Dimensional
Bounded-Weight Constrained Codes

Tuan Thanh Nguyen, Kui Cai, Kees A. Schouhamer Immink, and Yeow Meng Chee

Abstract—In this work, given n, p > 0, efficient encoding/decoding
algorithms are presented for mapping arbitrary data to and from
n × n binary arrays in which the weight of every row and every
column is at most pn. Such constraint, referred to as p-bounded-
weight-constraint, is crucial for reducing the parasitic currents in
the crossbar resistive memory arrays, and has also been proposed
for certain applications of the holographic data storage.

I. INTRODUCTION

In resistive memories, the memory cell is a passive two-
terminal device that can be both read and written over a simple
crossbar structure [1], [2], which facilitates a huge density
advantage. However, a fundamental and challenging problem of
the crossbar memory arrays is the sneak path problem. When a
cell in a crossbar array is read, a voltage is applied upon it, and
current measurement determines whether it is in a low-resistance
state (LRS, corresponding to a ‘1’) or a high-resistance state
(HRS, corresponding to a ‘0’). The sneak path is due to an
effect by which in parallel to the desired measurement path,
alternative current paths through other array cells distort the
measurement, which may result in reading an erroneous state.
The sneak path problem was addressed by numerous works with
different approaches and at various system layers [3], [4]. An
effective method to reduce the sneak path effect is by enforcing
fewer memory cells with the LRSs. This can be achieved by
applying constrained coding techniques to convert the user data
into a 2D-constrained array that limits number of 1’s in every
row and every column. For example, Ordentlich and Roth [3]
required the weight in every row and every column to be at
most half, and presented efficient encoders with redundancy at
most (2n − 1) for n × n array. In [5], the authors studied the
bounds of codes that required the weight in every row and
every column is precisely pn and provided a coding scheme
based on the enumeration coding technique. The redundancy of
the proposed encoder was at most 2nµ(n, p) + O(n + log n),
where µ(n, p) is the least redundancy required to encode one-
dimensional binary codewords of length n such that the weight is
pn. Besides resistive memories, this constraint has been proposed
for applications in holographic storage systems as well [5], [6].

In this work, we provide efficient designs for n × n binary
arrays that satisfy the p-bouned-weight-constraint, in which the

Tuan Thanh Nguyen and Kui Cai are with the Singapore University of
Technology and Design (email: {tuanthanh nguyen, cai kui}@sutd.edu.sg). The
work of Kui Cai and Tuan Thanh Nguyen is supported by Singapore Ministry
of Education Academic Research Fund MOE2019-T2-2-123.

Kees A. Schouhamer Immink is with the Turing Machines Inc, Willem-
skade 15d, 3016 DK Rotterdam, The Netherlands (email: schouhamerim-
mink@gmail.com).

Yeow Meng Chee is with the Department of Industrial Systems En-
gineering and Management, National University of Singapore (email: ym-
chee@nus.edu.sg). The research of Yeow Meng Chee is supported by the
Singapore Ministry of Education under grant MOE2017- T3-1-007.

This paper was presented at 2021 IEEE International Symposium on Informa-
tion Theory [7].

weight in every row and every column is at most pn for arbitrary
p ∈ (0, 1). Due to space constraints, we only summarise the
results and describe the main idea of the algorithms. Details can
be found in [7] and the results have been presented in ISIT 2021.

A. Notation

For a binary sequence x, we use wt(x) to denote the weight
of x, i.e the number of ones in x. We use x to denote the
complement of x. For example, if x = 00111 then wt(x) = 3
and x = 11000. Given two binary sequences x = x1 . . . xm and
y = y1 . . . yn, the concatenation of the two sequences is defined
by xy , x1 . . . xmy1 . . . yn.

Let An denote the set of all n×n binary arrays. The ith row of
an array A ∈ An is denoted by Ai and the ith column is denoted
by Ai. We use Ai;〈j〉 to denote the sequence obtained by taking
the first j entries of the row Ai and use Ai;〈j〉 to denote the
sequence obtained by taking the first j entries of the column Ai.
Given n, p > 0, we set

B(n, p) =
{
A ∈ An : wt(Ai) 6 pn and wt(Ai) 6 pn for 1 6 i 6 n

}
.

In this work, we are interested in the problem of designing effi-
cient coding methods that encode (decode) binary data to (from)
B(n, p). Particularly, we provide two linear-time encoders.

II. ENCODER I FOR B(n, p) WHEN p > 1/2

Encoder I adapts the sequence replacement technique and
the result in [8] (see Theorem 1), with the antipodal matching
constructed in [3] (see Definition 1) to encode arbitrary data to
B(n, p) when p > 1/2 with at most n+ 3 redundant bits.

Theorem 1 (Nguyen et al. [8]). Given p1, p2 where 0 6
p1 < 1/2 < p2 6 1, let c = min{1/2 − p1, p2 − 1/2}.
For (1/c2) logem 6 ` 6 m, there exists linear-time algorithm
ENCseq : {0, 1}m−1 → {0, 1}m such that for all x ∈ {0, 1}m−1
if y = ENCseq(x) then wt(y) ∈ [p1m, p2m]) and for every
window w of size ` of y, wt(w) ∈ [p1`, p2`].

Definition 1 (Ordentlich and Roth [3]). An antipodal matching φ
is a mapping from {0, 1}n to itself with the following properties
holding for every x ∈ {0, 1}n:

1) wt(φ(x)) = n− w(x).
2) If wt(x) > n/2 then φ(x) has all its 1’s in positions where

x has 1’s.
3) φ(φ(x)) = x.

Set m = n2−(n+3), ` = n, p1 = 0, p2 = p and c = p−1/2.
According to Theorem 1, for sufficient n that (1/c2) loge(n

2 −
n − 3) 6 n 6 n2 − n − 3, there exists linear-time encoder,
ENCseq : {0, 1}m → {0, 1}m+1 such that for all x ∈ {0, 1}m
and y = ENCseq(x) we have wt(w) ∈ [0, pn] for every window
w of size n of y. In addition, we follow [3] to construct the
antipodal matchings φ for sequences of length n− 1.



p-bounded Encoder I, ENCI
B(n,p).

INPUT: x ∈ {0, 1}m
OUTPUT: A , ENCI

B(n,p)(x) ∈ B(n, p) with p > 1/2

(I) Set y = ENCseq(x) ∈ {0, 1}m+1. Suppose that y =
y1y2 . . . yn2−n−2.

(II) Fill n2 − n− 1 bits of y to A row by row as follows.
• Set Ai , yn(i−1)+1 . . . yni for 1 6 i 6 n− 2.
• Set An−1 , yn(n−2)+1 . . . yn2−n−2 ∗1 ∗2
• Suppose that An = z1z2 . . . zn
• If wt

(
An−1;〈n−2〉

)
> p(n − 2), flip all bits in

An−1;〈n−2〉 and set ∗1 = 1, otherwise set ∗1 = 0.
(III) For 1 6 i 6 (n− 1), we check the ith column:

• if wt
(
Ai;〈n−1〉

)
> pn, set zi = 1 and replace

Ai;〈n−1〉 with φ
(
Ai;〈n−1〉

)
• Otherwise, set zi = 0.

(IV) Check the nth row:

• If wt
(
An;〈n−1〉

)
> pn, set ∗2 = 1 and replace

An;〈n−1〉 with φ
(
An;〈n−1〉

)
• Otherwise, set ∗2 = 0.

(V) Check the nth column:

• If wt
(
An;〈n−1〉

)
> pn, set zn = 1 and replace

An;〈n−1〉 with φ
(
An,〈n−1〉

)
.

• Otherwise, set zn = 0.
(VI) Output A.

Theorem 2. The Encoder ENCI
B(n,p) is correct. In other words,

ENCI
B(n,p)(x) ∈ B(n, p) with p > 1/2 for all x ∈ {0, 1}m. The

redundancy is n+ 3 (bits).

III. ENCODER II FOR B(n, p) WHEN p < 1/2

A key ingredient of our method is the swapping function.

Definition 2. Given y = y1y2 . . . ym, z = z1z2 . . . zm. For
1 6 t 6 m, we use Swapt(y, z), Swapt(z,y) to denote the
sequences obtained by swapping the first t bits of y and z, i.e.
Swapt(y, z) = z1z2 . . . ztyt+1yt+2 . . . ym and Swapt(z,y) =
y1y2 . . . ytzt+1zt+2 . . . zm.

Lemma 1 (Swapping Lemma). Given x = yz ∈ {0, 1}2m, y =
y1y2 . . . ym, z = z1z2 . . . zm. If x is p-bounded then there exists
an index t, referred to as a swapping index of x and y, such that
both Swapt(y, z) and Swapt(z,y) are p-bounded.

We now describe briefly Encoder II.
• In phase 1, the encoder encodes the information of length
N into array S of size m×n where every row is p-bounded.

• In phase 2, the encoder follows the swapping procedure
(illustrated through example in Figure 1) to ensure that
every column of S is p-bounded.

• In phase 3, it encodes all swapping indices into an array S′

of size (n−m)×n such that its every row and every column
is p-bounded. The encoder outputs the concatenation of S
and S′, which is an array of size n× n.

See [7] for more details, we show that m = n − Θ(log n) and
the redundancy of our encoder is at most nµ(n, p) +O(n log n)
redundant bits.

(a) We divide S into two subarrays LS and RS . In this
step, only LS is not p-bounded. To obtain two p-bounded
subarrays, we swap their prefixes of length six to obtain
Swap2(LS , RS) and Swap2(RS , LS), respectively.

1 0 0 1
0 1 1 0
0 1 0 0
0 1 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 0

1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 1

LS RS Swap2(LS , RS) Swap2(RS , LS)

(b) We divide LS into two subarrays LLS
and RLS

, and divide
RS into two subarrays LRS

and RRS
, we observe that only

LRS
is not p-bounded. We proceed as before and swap their

prefixes of length one.

0 0
0 0
0 1
0 1

0 1
1 0
0 0
0 0

1 0
0 1
0 1
0 0

0 0
0 0
0 0
0 1

LLS
RLS

LRS
RRS

0 0
0 0
0 1
0 1

0 1
1 0
0 0
0 0

0 0
0 1
0 1
0 0

1 0
0 0
0 0
0 1

No swapping
Swapping of prefixes
of length one

(c) Finally, we divide each of the four subarrays into two,
resulting in the n = 8 columns. The final output is then:

0
0
1
0

0
0
0
1

0
1
0
0

1
0
0
0

0
1
0
0

0
0
1
0

1
0
0
0

0
0
0
1

Fig. 1: Example for n = 8, p = 1/4. The current subarray S is of
size 8× 4. The subarrays, highlighted in red, are not p-bounded
while those, highlighted in blue, are p-bounded.

REFERENCES

[1] A. Chen, “Accessibility of nano-crossbar arrays of resistive switching
devices,” Proc. 11th IEEE Int. Conf. Nanotechnol., pp. 1767-1771, 2011.

[2] R. Ben Hur and S. Kvatinsky, “Memory processing unit for in-memory
processing,” in Proc. IEEE ACM Int. Symp. Nanosc. Archit., Jul. 2016.

[3] E. Ordentlich and R. M. Roth, “Low complexity two-dimensional weight-
constrained codes,” 2011 IEEE International Symposium on Information
Theory Proceedings, St. Petersburg, 2011, pp. 149-153.

[4] Y. Cassuto, S. Kvatinsky and E. Yaakobi, “Information-Theoretic Sneak-
Path Mitigation in Memristor Crossbar Arrays,” in IEEE Transactions on
Information Theory, vol. 62, no. 9, pp. 4801-4813, Sep. 2016.

[5] E. Ordentlich and R. M. Roth, “Two-dimensional weight-constrained codes
through enumeration bounds,” in IEEE Transactions on Information Theory,
vol. 46, no. 4, pp. 1292-1301, Jul. 2000, doi: 10.1109/18.850669.

[6] R. Talyansky, T. Etzion, and R. M. Roth, “Efficient Code Constructions for
Certain Two-Dimensional Constraints”, IEEE Transactions on Information
Theory, vol. 45, no. 2, pp. 794-799, Mar. 1999.

[7] T. T. Nguyen, K. Cai, K. A. S. Immink and Y. M. Chee, “Efficient Design of
Capacity-Approaching Two-Dimensional Weight-Constrained Codes,” 2021
IEEE International Symposium on Information Theory (ISIT), 2021.

[8] T. T. Nguyen, K. Cai and K. A. Schouhamer Immink, “Efficient Design
of Subblock Energy-Constrained Codes and Sliding Window-Constrained
Codes,” in IEEE Transactions on Information Theory, 67 (12), Dec. 2021.


