
DNA-Storalator: End-to-End DNA Storage Simulator
Gadi Chaykin1, Nili Furman1, Omer Sabary2, Dvir Ben-Shabat1, and Eitan Yaakobi1

1The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel.
2Electrical and Computer Engineering Dept., University of California, San Diego, La Jolla, CA 92093, USA.

Abstract—DNA-Storalator is a cross-platform software tool that
simulates the complete process of encoding, storing, and decoding
digital data in DNA molecules. The simulator receives an input
file with the designed DNA strands that store digital data and
emulates the different biological and algorithmical components of
the storage system. The biological component includes simulation
of the synthesis, PCR, and sequencing stages which are expensive
and complicated and therefore are not widely accessible to the
community. These processes amplify the data and generate noisy
copies of each DNA strand, where the errors are insertions,
deletions, long-deletions, and substitutions. DNA-Storalator injects
errors to the data based on the error rates, as they vary
between different synthesis and sequencing technologies. The
rates are based on comprehensive analysis of data from previous
experiments but can also be customized. Additionally, the tool
can analyze new datasets and characterize their error rates to
build new error models for future usage in the simulator. DNA-
Storalator also enables control of the amplification process and
the distribution of the number of copies per designed strand. The
coding components are: 1. Clustering algorithms which partition
all output noisy strands into groups according to the designed
strand they originated from; 2. State-of-the-art reconstruction
algorithms that are invoked on each cluster to output a close/exact
estimate of the designed strand; 3. Integration with external error-
correcting codes and other encoding and decoding techniques. This
end-to-end DNA storage simulator grants researchers from all
fields an accessible complete simulator to examine new biological
technologies, coding techniques, and algorithms for current and
future DNA storage systems.

I. INTRODUCTION

The emerging technology of DNA data storage has been
studied extensively in the past decade due to its high capacity
and stability. To store data in DNA, it is first required to design
a code that defines how to encode the binary information to
DNA strands. Then, using DNA synthesis, the DNA strands that
encode the data are generated and are stored all together in a
storage container. Following that, to retrieve the binary data,
some synthesized DNA strands are sampled from the container
and are then amplified using PCR. Then, DNA sequencing is
performed on each of the amplified strands in order to get
its symbols. Lastly the sequenced DNA strands are decoded
back to binary information using the decoding procedure of
the designed code. The processes of synthesis, PCR, and
sequencing are all error-prone and introduce errors, while the
dominant errors are insertions, deletions, and substitutions.

Due to technology limitation, the synthesized strands are lim-
ited in their length (roughly up to 300 symbols). Additionally,
the current synthesis technologies cannot always generate the
exact designed sequence, but a noisy version of it. Moreover,
these technologies cannot generate a single copy per strand,
but only multiple copies in the order of thousands to millions.
As mentioned earlier, these noisy copies of each design strand
are all mixed and are stored together in a storage container.
Therefore, before the decoding step, it is required to group them
by their original designed strands. This step is called clustering,
and each multiset of noisy copies that were originated from

the same design strand is called a cluster. The clustering step
is usually done by indices, that are defined on the strands as
part of the coding scheme. Each encoded strand consists of
index and data (including redundancy symbols that are used
for error-correction). The indices helps in the clustering step,
and also defines order on the strands. After the clustering
step, a reconstruction algorithm is performed on each cluster
to estimate the designed strand. The reconstruction algorithms
usually utilize the inherent redundancy of the synthesis and
use the several noisy copies of each strand to correct errors.
However, since they cannot always correct all of the errors, the
remaining errors are corrected using an error-correcting code.

Both synthesis and sequencing technologies continue to be
developed and each such a technology varies in its error
distributions and characterization. Therefore, there is a crucial
need to design and study coding techniques that address the dif-
ferent technologies, together with clustering and reconstruction
algorithms. Moreover, when designing error-correcting codes
for DNA storage systems, one should also address the accuracy
of such algorithms on a given technology to define the required
error-correction capability. In this work, we present the DNA-
Storlator, a software tool that allows researchers from all fields
to compare, study, and improve their coding techniques and
algorithms with current state-of-the-art solutions. The tool can
simulate the errors of the synthesis, PCR, and sequencing
processes on a given design file. Then, the tool allows to
its users to perform different previously published clustering
and reconstruction algorithms, as well as user-designed such
algorithms. Additionally, the DNA-Storalator supports the er-
ror characterization of new DNA synthesis and sequencing
technologies, using a small sample of its reads. Then, users
can simulate errors based on this characterization and analyze
algorithms for these technologies.

II. THE DNA STORALATOR

In this section we present the components of the DNA-
Storalator. This simulator is a user-accessible tool that allows
a complete simulation and algorithms analysis for all stages of
DNA storage. A schematic overview of the tool can be found in
Figure 1. Detailed instructions to use the tool are given in [8].

The input to the DNA-Storalator is a single design file in a
text format which contains the input-strands to be simulated in
the storage processes. The tool includes four components that
are the crucial parts of any DNA-based storage system.
1) Error characterization using SOLQC [8]: There are several
factors that affect the error characterization of a DNA storage
library. The most important ones are the synthesis and the
sequencing technologies. However, there are additional factors
that affect the error rates, such as the design factors and the
method that is used thru the PCR process. Therefore, when
exploring both new and existing methods, it is required to
characterize the errors of the library. Using a small sample



of a sequenced DNA storage library, the tool can characterize
and analyze the errors in the library using the SOLQC tool [8].
Then, these error characteristics can be used to simulate addi-
tional data from the same synthesis and sequencing method.
2) Synthesis, sequencing, and PCR error-simulation: This com-
ponent simulates the different errors (insertions, deletions,
and substitutions) which occur in the chemical processes. For
a combination of technologies of synthesis and sequencing
methods, the user is presented with heuristics of the errors
probabilities for the different types of errors and the different
types of bases. The heuristic of these errors is based on results
from previous experiments, such as [5], [9], [10]. The DNA-
Storalator also allows user-defined error rates.

The PCR step is simulated by generating a different number
of copies for every given designed strand. The number of
copies in each cluster can be defined in the following two
ways. a) Explicit definition - Using a vector that defines the
exact number of copies in each cluster. b) Distribution - In this
method, the user determines the probability density function
of the cluster size distribution, the average, minimum, and
maximum cluster size. Then, the tool simulates the clusters
according to the defined distribution. The default distribution
is the skewed-normal distribution.

To conclude, for each input-strand, the tool calculates the
amount of copies to be produced according to the defined
distribution. Then the simulator linearly scans the bases of every
strand and inserts different errors according to the base type and
the error rates. Lastly, the generated reads are shuffled.
3) Clustering: Following the error simulation, the user is able
to perform the clustering step. The goal of this step, is to par-
tition the unordered set of noisy copies into clusters, such that
all the copies in each cluster originate from the same original
designed input-strand. Currently, the DNA-Storalator includes
three clustering algorithms. a) Pseudo clustering algorithm. In
this algorithm the perfect clustering is given as an input. Then,
the algorithm filters out from each cluster every read that has
more errors than a given threshold. b) Index-based clustering.
In this algorithm, the clusters are created by the reads’ indices
(with exact match or with some user-defined similarity thresh-
old). Then, the similarity between the data part of the reads in
each cluster is being evaluated with edit distance to filter-out
reads. c) Min-hash based algorithm [6]. The DNA-Storalator
also includes an implementation of the algorithm published
in [6]. In this algorithm, several random hash functions are
defined on the reads. Then, the hash functions are used to
cluster together reads with similar hash values.

Following the clustering, several statistics are presented
to the users. These statistics include the number of clusters
generated, true-positive rates, and false-negative rates of the
clustering stage. It is important to note that the tool conve-
niently allows users to perform integration with new clustering
algorithms. By doing so, the user is able to test and compare
different clustering algorithms.
4) Reconstruction: In this part it is assumed that the clus-
tering step was completed, and the focus is on estimating
the original strand from its noisy cluster. The input to this
step is the clustered file of the noisy reads. Each cluster
consists of noisy copies of a designed strand which are used
for its recovery. The problem of using a set of erroneous
sequences in order to recover the correct one falls under the

framework of Levenshtein’s reconstruction problem [4] and
the trace reconstruction problem [1]. These models assume
that the sequence is transmitted over multiple channels, and
the decoder, which observes all channel estimations, uses this
inherited redundancy to correct the errors. The main problem
studied under this paradigm asks for the minimum number
of channels that guarantees successful decoding either in the
worst case or in high probability. The simulator includes several
state-of-the-art reconstruction algorithms that can be performed
either on clustered simulated data, or on any given clustered
data sets. The simulator includes linear-time reconstruction
algorithm [3] and dynamic-programing based reconstruction
algorithms [7]. Additionally, the simulator also includes a
trellis-based reconstruction algorithm [9], that can be performed
if the error probabilities are known.

Figure 1. A schematic overview of the DNA-Storalator and its
main components. This figure summarizes Section II.

III. USE-CASE EXAMPLES

The list below describes some of the use-cases of the tool.
1) Development of new coding techniques for DNA storage.

The tool allows users to analyze how different coding
techniques affect the accuracy of the clustering and the
reconstruction algorithms. Additionally, the simulator can
be used to estimate the required error-correction capability
of current/future DNA synthesis and sequencing methods.

2) Development of new algorithms for DNA storage. The tool
supplies a convenient way to compare new and existing
algorithms for DNA storage systems.

3) Experiment designing with the DNA-Storalator. The sim-
ulator provides an efficient method to test new algorithms
and coding techniques before performing expensive and
time-consuming wet experiments.

REFERENCES

[1] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing strings from
random traces,“ Proc. ACM-SIAM symp. on Discrete algorithms, pp. 910–918, 2004.

[2] G. Chaykin, N. Furman, O. Sabary, D. Ben Shabat, and E. Yaakobi, “DNA-Storalator:
End-to-end DNA storage simulator,” https://github.com/gadihh/DNASimulator, 2022.

[3] P. S. Gopalan et al. “Trace reconstruction from noisy polynucleotide sequencer
reads,“ US Patent App., 15/536,115, 2018.

[4] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Transactions on
Information Theory, vol. 47, no. 1, pp. 2–22, 2001.

[5] L. Organick et al. “Random access in large-scale DNA data storage,“ Nature
Biotechnology, vol. 36, pp. 242, 2018.

[6] C. Rashtchian et al. “Clustering billions of reads for DNA data storage,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

[7] O. Sabary, A. Yucovich, G. Shapira, and E. Yaakobi, “Reconstruction algorithms for
DNA-storage systems,“ bioRxiv 2020.09.16.300186, 2020.

[8] O. Sabary, Y. Orlev, R. Shafir, L. Anavy, E. Yaakobi, and Z. Yakhini, “SOLQC:
Synthetic oligo library quality control tool,” Bioinformatics, vol. 37, no. 5, pp. 720–
722, 2021.

[9] S. R. Srinivasavaradhan et al.“Trellis BMA: Coded trace reconstruction on IDS
channels for DNA storage,“ Proc. Int. Symp. Inf. Theory, pp. 2453–2458, 2021.

[10] S. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free DNA-based
data storage,” Scientific Reports, vol. 7, no. 1, pp. 1-6, 2017.


	Introduction
	The DNA Storalator
	Use-Case Examples
	References

