
Persistent Scripting

Zi Fan Tan Jianan Li Haris Volos Terence Kelly

hvolos01@ucy.ac.cy tpkelly@eecs.umich.edu

NVM Workshop
UC San Diego

9 May 2022
1

mailto:hvolos01@ucy.ac.cy,tpkelly@eecs.umich.edu?subject=NVMW22


NVM & Low-Level Languages

Mainstream NVM Programming: C/C++

machine efficiency
hardware control (cache line flushes)

Downside: programmer efficiency

2



Scripting

Convenient

Concise

Productive

Persistence?

3



Persistence for Scripting

Last stronghold of undersimplification

Several options in Python, Perl

manual
per-variable fuss

External checkpoint-restore (CRIU, DMTCP)

wrong transparency

4



Example: Log File Processing

Incremental processing ⇒ persistence

5



Manual Persistence

6



Persistent Scripting Done Right

Interface: Interpreter remembers variables across runs

new “--persist=heapfile” flag

Implementation: Slide persistent heap beneath interpreter

Benefits

effortless persistence: scripts remain oblivious
share persistent variables between unrelated scripts
Big Data

7



pm-gawk: Persistent Memory gawk

Slide persistent heap beneath gawk interpreter

Under 100 LOC added/changed out of 91,000 LOC

add new --persist flag (easy)
#define malloc pma malloc etc. (easy)
gawk symbol table ⇐⇒ pma root pointer (not too hard)

https://github.com/ucy-coast/pmgawk

https://coast.cs.ucy.ac.cy/projects/pmgawk/

8

https://github.com/ucy-coast/pmgawk
https://coast.cs.ucy.ac.cy/projects/pmgawk/


pm-gawk in Action

$ truncate -s 409600 heap.pma

$ gawk --persist=heap.pma ’BEGIN{myvar = 47}’

$ gawk --persist=heap.pma ’BEGIN{print myvar}’

47

9



Digression: Why gawk?

Relatively simple

Lightly guarded

Innovations permitted in interpreter

Maintainer answers e-mail

10



Foundation: pma

Least-imaginatively-named persistent memory allocator

Runs on conventional hardware; NVM not required

malloc, calloc, realloc, free

init

get root/set root

https://queue.acm.org/DrillBits7/

11

https://queue.acm.org/DrillBits7/


Crash Tolerance

Usual commonsense precautions for scripting

Make backups of important files

“cp --reflink heap.pma heap.bak ; sync”

Distinguish successful completion vs. interruption

Re-run jobs interrupted by failures

12



Performance: Hardware

Cascade Lake 2.1 GHz

20 cores, 40 threads (irrelevant; gawk is serial)

DRAM: 64 GB

NVM: 256 GB Optane PM Series 100

SSD: 960 GB SATA, 6 GB/sec

13



Performance: Workload

Incremental log processing w/ AWK script

100 simulated days, measure performance on last day

total 1 billion random strings

non-stationary distribution, mimics “hot set drift”

report write and sync times separately

sync off critical path of data analysis

14



Performance: Contestants

(N) Näıvely read all 100 logs on day 100

(B) BEGIN block implements manual incremental processing

(P) pm-gawk, varying media beneath pma persistent heap:

DRAM (/dev/shm)
Optane configured as block storage
SSD block storage
Optane DAX mode

All outputs (daily summary reports) written to SSD

15



Performance: Results

16



Performance: Results

17



Performance: Results

18



Performance: Results

19



Performance: Results

20



Performance: Mystery

21



Dirty Pages Not Dirt Cheap

22



Summary

Scripting should be easy and productive, but isn’t

Solution: interpreter aware, scripts oblivious

malloc-compatible persistent heap makes it easy

Reducing gawk stores would reduce overheads

https://github.com/ucy-coast/pmgawk

https://queue.acm.org/DrillBits7/

23

https://github.com/ucy-coast/pmgawk
https://queue.acm.org/DrillBits7/

