
Persistent Scripting
Zi Fan Tan Jianan Li Haris Volos Terence Kelly

Contact: hvolos01@ucy.ac.cy tpkelly@eecs.umich.edu

Persistence High & Low, Inside & Out

Low-level languages have long dominated persistent memory.
From early NVM research [1, 14] to PMDK [13], mainstream
persistent memory programming has meant C/C++, largely be-
cause low-level languages can readily use new CPU instruc-
tions needed to fully exploit NVM hardware. Sadly, low-level
languages reduce programmer productivity.

High-level scripting languages trade hardware efficiency
and control for convenience and productivity by doing what
the programmer intends without requiring her to say it. For ex-
ample, they waive variable declarations and take an easygoing
attitude toward data types. Can scripting languages support
persistence in the same carefree spirit?

Currently they do not. Python’s several persistence options,
for example, are fussy and verbose [8, 12, 15]. Worst of all,
they explicitly connect individual data structures (e.g., asso-
ciative arrays) to persistence mechanisms. Perl’s alternatives
are similarly overt and fine-grained.

Process checkpoint/restore suffers the opposite problems:
It is too transparent and coarse-grained. It can freeze a run-
ning interpreter and re-start it later, like a SIGSTOP/SIGCONT
that spans machine reboots. Implementing persistent script-
ing with CRIU [2], however, taught us that it’s wrong for our
purposes: Because the interpreter can’t perceive resurrection,
scripts must include ugly code to find the current run’s inputs.

The Right Stuff

To motivate persistent scripting, consider the AWK script be-
low, distilled from a pervasive practical problem.

{ # executes once per input line
if (! ($0 in id)) # assign numeric IDs to

id[$0] = ++n; # unique strings
freq[$0]++; # count string frequencies

}
END { # executes after all input processed
print n; # number of unique strings
for (s in id) # print table of IDs & frequencies

print id[s], s, freq[s];
}

Text strings, one per input line, appear in variable $0. As-
sociative arrays id and freq assign serial numbers to strings
and count their popularity. The script prints a summary table
of unique strings with their IDs and frequencies. One of us
(Kelly) relied on scripts like this for his dissertation research
on Web caching; the strings were URLs from log files.

Log processing, a classic scripting chore, often requires per-
sistence because it is incremental: Every day a new log file ar-
rives and a script like the one above must summarize all logs
received to date. For most real-world logs, naı̈vely processing
from scratch the entire archive of N logs on day N is far less
efficient than maintaining a persistent summary of all past logs
and updating it incrementally as new ones arrive.

In Python or Perl we could use one of the persistence mech-
anisms discussed earlier, e.g., perltie could bind each array
in a Perl script to its own dbm database. But then the script bal-
loons and spawns a gaggle of dbm files, and lone scalars like n
in the script above are a bother. Alternatively, a script can roll
its own persistence, e.g., our AWK script can ingest yesterday’s
summary before reading today’s input log if we prepend

BEGIN { # executes before first input line is read
getline n < "summary";
while (0 < (getline < "summary")) {

id[$2] = $1; freq[$2] = $3; }
}

But this bloats the code and adds parsing overhead.
The style of persistence closest to the spirit of scripting sim-

ply preserves programmer-defined variables across script exe-
cutions: The next time it runs, a script should awaken pre-
populated with all variables that existed when the previous ex-
ecution terminated. If persistence is implemented as an inter-
preter option, scripts remain oblivious to persistence. If scripts
and their persistent state are stored in separate files, such state
may be shared among different scripts.

Persistent Memory gawk

We modified the GNU AWK interpreter, gawk, to support per-
sistent scripting. Although not today’s trendiest scripting lan-
guage, AWK remains in widespread use [5,11]. It is supremely
convenient for the data-processing tasks for which it was de-
signed and can be remarkably fast [3,9]. GNU AWK is actively
maintained; recent improvements include support for high-
precision arithmetic, a profiler, and a debugger. The source
code is tidy and maintainer Arnold Robbins explained aspects
related to our work.

Persistent memory gawk (pm-gawk) uses a new persistent
memory allocator, pma, that allocates from a file-backed mem-
ory mapping. The media beneath the filesystem containing
the backing file are unconstrained, i.e., pma supports persis-
tent memory programming on conventional hardware [6] as
well as NVM. The interface is simple and familiar: In addi-
tion to the malloc/free of standard C, pma exposes an init

function that specifies a backing file and get/set functions
that access a root pointer from which all live data on pma’s
persistent heap must be reachable. Under the hood pma coa-
lesces freed objects where possible, so any sequence of pma
calls that releases every allocated object returns pma to its ini-
tial state; this “reversibility” property greatly aids debugging.
Like AWK and gawk, pma is single-threaded and thus avoids
the complexity of parallelism, relying instead on time-tested
techniques from the heyday of serial allocators. A companion
paper describes pma internals and provides source code [7].

Integrating pma to create pm-gawk was remarkably easy.
One reason is pma’s conventional “pointerish” malloc/free
interface, which is far more compatible with existing C code

mailto:hvolos01@ucy.ac.cy,tpkelly@eecs.umich.edu?subject=NVMW22

than the “offsettish” allocators of relocatable persistent
heaps [6]. We made three changes to gawk: First, new
command-line option “--persist=heap.pma” supplies the
backing file containing pma’s persistent heap. Second, we re-
placed calls to conventional malloc, calloc, realloc, and
free with their pma counterparts via #defines. Finally,
we arranged for the interpreter’s dynamically allocated inter-
nal data structures representing script-defined variables to be
reachable from pma’s root pointer. The first two changes were
simple. Root-pointer reachability was not much harder, re-
quiring a handful of changes to just one source file, because
gawk’s internal symbol table provides a single entry point to
all script variables for the root. Our changes amount to un-
der 100 lines of gawk’s 91,000 LOC. We are working with the
gawk maintainer to merge our changes into the official distri-
bution; meanwhile a pm-gawk fork is available [10].

To use pm-gawk, first create for the persistent heap a sparse
file whose size is a multiple of the system page size; try
“truncate -s 4096000000 heap.pma” on the command
line. Pass this uninitialized backing file to the pm-gawk in-
terpreter via the “--persist” flag when executing an AWK
script; thereafter the file will contain a persistent heap holding
all script variables, which will be available to the script when-
ever it is run again with --persist. For the AWK script of
the previous page, the net effect is to render the BEGIN block
unnecessary: Every run of the script will start with variables
id, n, and freq as they were left by the previous run. Worried
that an untimely crash could corrupt the persistent heap while
it is being modified in-place by a pm-gawk script? Make a
storage-efficient backup of the heap file before executing the
script (“cp --reflink heap.pma heap.bak; sync”).

The benefits of persistent gawk extend beyond persistence.
pm-gawk is Big Data AWK: Because pma allocates memory
backed by a file, the size of its heap is limited by available
storage beneath the filesystem, which often far exceeds avail-
able swap. Furthermore, persistent heaps containing script
variables may be exchanged freely between different scripts.
Heap portability enabled us, for example, to streamline an off-
the-shelf spam filter implemented as a pair of AWK scripts [4].
Its model-training script formerly communicated parameters
to its filtering script via intermediate text files. With pm-gawk,
the parameters travel as AWK variables in a persistent heap;
writing/parsing intermediate files becomes unnecessary.

Dirty Page Not Dirt Cheap

We measure performance of a log-processing workload. For
each of 100 simulated days we generate a log file of random
strings using a non-stationary distribution to mimic the “hot set
drift” observed in real Web access logs. We process 1 billion
lines of these logs using the AWK code of the previous page.

Tests N and B use unmodified gawk. Test N gobbles all 100
input files at once (the naı̈ve approach). Test B uses the BEGIN
block to incrementally update its summary of all inputs seen
to date. Test P uses pm-gawk instead of the BEGIN block.
For B and P we report run times for the final (hundredth) day
only. All script outputs are written to an SSD-backed filesys-
tem; P tests vary the media beneath the persistent heap. Run

times reflect in-memory activity only. Time to sync data to
durability is reported separately because it is off the critical
path of data processing.

time (sec) speedup vs. N
test run sync total run total

N (naı̈ve) 669.43 1.50 670.93 1.00 1.00
B (BEGIN) 49.17 1.51 50.68 13.62 13.24
P /dev/shm/ 53.58 1.51 55.09 12.49 12.18
P Optane block 58.68 23.54 82.22 11.41 8.16
P SSD block 58.77 43.93 102.71 11.39 6.53
P Optane DAX 174.81 3.15 177.96 3.83 3.77

Our results mostly confirm expectations. Incremental pro-
cessing (B and P/DRAM) is over 10× faster than the naı̈ve ap-
proach (N). Incremental processing with pm-gawk is roughly
as fast as the manual approach (B versus P run times) if the
persistent heap resides in DRAM. Optane in DAX mode is
slower than DRAM—though the comparison isn’t entirely fair
because only the former provides durability. Pushing the per-
sistent heap from DRAM to durable media (sync times) is
faster for Optane configured as a block device than for an SSD,
as we would expect.

The absolute magnitudes of the sync times to block stor-
age, however, are surprisingly large. Why? The for loop
in the END block of our AWK script—conceptually a read-
only operation—modifies nearly every memory page of the
heap. This does no harm to a conventional heap, but for a
persistent heap in a file-backed memory mapping, more dirty
pages means more work for sync. Persistent memory, whether
backed by NVM or block storage, penalizes STORE instruc-
tions more severely than conventional ephemeral memory.

Conclusions

Persistent scripting eliminates one of the few remaining un-
dersimplifications of high-level scripting languages by provid-
ing the right kind of persistence with zero programmer effort.
A malloc-compatible persistent heap makes it easy to imple-
ment persistent gawk, whose in-memory performance is on par
with manual persistence. Reducing interpreter STOREs would
reduce durability overheads.

References
[1] J. Coburn et al. NV-Heaps. In ASPLOS, 2011. [LINK].
[2] https://criu.org/Main_Page.
[3] A. Drake. Command-line Tools can be 235x Faster than your

Hadoop Cluster, Jan. 2014. [LINK].
[4] S. Hauser. Unix shell statistical spam filter, Mar. 2022. [LINK].
[5] B. Hoyt. The State of the AWK, May 2020. [LINK].
[6] T. Kelly. Persistent memory programming on conventional

hardware. ACM Queue, 17(4), July/August 2019. [LINK].
[7] T. Kelly et al. Persistent memory allocation. ACM Queue, 20(2),

March/April 2022. [LINK].
[8] M. Lutz. Programming Python. O’Reilly, 2011. p. 1303.
[9] B. O’Connor. Don’t MAWK AWK..., Sept. 2010. [LINK].

[10] Persistent memory gawk (pm-gawk). https://coast.
cs.ucy.ac.cy/projects/pmgawk/
https://github.com/ucy-coast/pmgawk.

[11] Debian popularity contest, Feb. 2022. [LINK].
[12] https://pynvm.readthedocs.io/en/v0.3.1/.
[13] S. Scargall. Programming Persistent Memory. Apress, 2020. .
[14] H. Volos et al. Mnemosyne. In ASPLOS, 2011. [LINK].
[15] D. Waddington et al. PyMM. In PLOS, Oct. 2021. [LINK].

http://doi.acm.org/10.1145/1950365.1950380
https://criu.org/Main_Page
https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html
http://216.92.26.41/article/Statistical_spam_filter.html
https://lwn.net/Articles/820829/
https://dl.acm.org/doi/pdf/10.1145/3358955.3358957
https://queue.acm.org/DrillBits7/
https://brenocon.com/blog/2009/09/dont-mawk-awk-the-fastest-and-most-elegant-big-data-munging-language/
https://coast.cs.ucy.ac.cy/projects/pmgawk/
https://coast.cs.ucy.ac.cy/projects/pmgawk/
https://github.com/ucy-coast/pmgawk
https://qa.debian.org/popcon.php?package=gawk
https://pynvm.readthedocs.io/en/v0.3.1/
https://link.springer.com/content/pdf/10.1007/978-1-4842-4932-1.pdf
https://dl.acm.org/doi/10.1145/1950365.1950379
https://dl.acm.org/doi/10.1145/3477113.3487266

