Efficient Resumable Filter Queries

Muktikanta Sa

Micron Technologies

1 Introduction

Context. Non-volatile main memory (NVMM, for short) is a
byte-addressable memory that preserves its content after a power
outage. NVMM provides durability with close performance to volatile
memory in terms of bandwidth and latency [1]. Multiple data stores
are now designed for NVMM [2-5]. Compared with their volatile
predecessors, these NVMM-ready data stores do not cache data in
volatile memory but instead access directly the persistent medium.
To this end, they rely on persistent data structures (PDTs).

Motivation. In this context, several PDTs (e.g., [6, 7]) have been
proposed to efficiently leverage NVMM. These PDTs avoid the
dual representation problem and deliver substantially better perfor-
mance than the file system interface. Unfortunately to date, these
PDTs do not save the progress of read-only operations, such as
range queries [8]. This is problematic since many industrial work-
loads [9, 10] execute long-running query operations. A typical
example is a scan in OLAP workloads (for instance, TPC-H [11]).

Contributions. This paper proposes an approach to remedy the
above problem. We present a durable linked list that supports con-
current INSERT, REMOVE, and GET as well as a filter query operation.
The filter query is resumable and it can pursue its computation after
a crash. We also explain how to construct other queryable PDTs
such as a set, a skip list and a hash table. Preliminary evaluation
results show the benefits of our approach.

2 Resuming an Operation

Thread reincarnation. Durable linearizability (DLIN) is de-
fined without thread reincarnation, that is after a crash, a thread
never recovers [12]. This is inadequate in the context of long-
running tasks where we precisely want to pursue a computation
despite failures. To fix this, we require that an abstract history H
is well-formed when ops(#)[t] is sequential for every thread t.!
As in [12], H is durable linearizable when it is well formed and
ops(H) is linearizable. This simple redefinition of DLIN keeps the
composability and non-blocking properties.

Resumption points. In [12], the authors introduce persist points.

These points appear between the linearization point of an operation
and its response. They characterize when the history is durable
linearizable, much like linearization points characterize lineariz-
ability. Resumption points generalize persist points and capture
the durable progress of an operation. In detail, an operation m
is recoverable with value v at step s when m returns v in history
H<s.C.recover().solo(t), where C is a crash, recover() the recovery
procedure executed after it and solo(t) a solo continuation by ¢.
Step s is called a resumption point for operation m and value v. A
resumption point is maximum when resuming the operation after
a failure leads to the same result as if the thread invoking it would
be solo executing from that point. Namely, s is maximum when

10perator ops () trims the crash events from history 7. In [12], ops (%) must not
include crash events, thus forbidding thread reincarnation.

Pierre Sutra
Télécom SudParis
IP Paris

m returns also v in H<s.solo(t). One can establish that the persist
points defined in [12] are maximal resumption points. In other
words, if the system crashes then resumes, all progress made before
this point is kept in the durable state.

Resumable operation. DLIN does not tell us how much progress
is kept before a persist point. In particular, if a persist point is not
reached. the operation may restart from scratch after a failure, or
just not be executed at all. When operations are short-lived, this
does not pose a problem. However, long-running tasks may suffer
from this situation. To remedy this problem, we propose the notion
of resumable operation. An operation m in history H is resumable
when all its resumption points are maximal. With this type of oper-
ations, every inch of progress is kept in the durable state, avoiding
to restart the computation at recovery. The PDTs we present in the
next section support resumable filter queries.

3 Queryable Persistent Data Types

Specification. Our base data structure with support for resum-
able filter queries is a linked list. Consider two spaces of keys (K, <)
and values (V). For some item (k, v), the list offers three base op-
erations: INSERT(k,v), REMOVE(k) and GET(k), having the usual
semantics. Given some boolean function f, the list also supports
operation FILTER(f). A call to FILTER(f) filters the items in the list
according to f, that is it returns {k : (v = GET(k)) # LAf(0v)}. Any
number of threads may execute the list operations concurrently,
but a single filter query may happen at a time.

Variables. The durable linked list contains nodes allocated dy-
namically in both volatile (Node) and persistent (PNode) memory.
Each PNode holds an (immutable) key, its associated value and
two boolean flags storing its state (iFlag, dFlag). These flags in-
dicate whether the node is fully inserted, in the middle of an in-
sertion/deletion, or already deleted. Additionally, a PNode stores
two timestamps (its, dts) and a boolean (fq) related to a pending
filter query. A Node stores a copy of the key and a pointer to the
corresponding PNode. Similarly to [13], Nodes are linked by (word
size) pointers, called next.

Algorithms. To insert an item (k, v) in the list, or check that k
is already there, we follow a traditional lock-free pattern. In detail,
the position of k is first located by traversing the list. Once found, a
PNode and a Node are created and the insertion is attempted using
CAS. If this fails, the insertion is tried again. Removing an element
from the list follows a similar approach. Compared with [6], list
operations have two key differences: First, every time a thread
traverses the data structure it helps on-going insertion/removal
operations. Second, when an insertion/removal operation observes
that a filter query FILTER(f) is on-going it helps the query. If the
pair (k,v) is newly inserted, the thread executes f(v) and stores
the result in fq. Now if k is deleted, the thread adds k to a durable
tombstone set. To execute a filter query, a thread first computes
a starting timestamp then traverses the linked list following next
pointers. Upon encountering an item (k,v) in the list, the result

NVMW’22, May 2022, San Diego, USA

(a) 90/5/5 (b) 50/25/25 (c) 10/45/45

15[o Vaiie 5
e
s 4
£ 2
z 10 3
s : !
E 1
0 oLt 0
148 16 32 40 148 16 32 40 148 16 32 40
#threads #threads #threads

(d) 90/5/5 (e) 50/25/25 (f) 10/45/45

30 30

20 20

Throughput (M ops/s)

0
148 16 32 40 148 16 32 40 148 16 32 40
#threads #threads #threads

Figure 1. Comparing volatile vs. persistent data types—(top) skip list;
(bottom) hash table.

of f(v) is stored in the field fq of the corresponding PNode. This
node is then referenced in variable rp. Once the list is traversed, the
filter query returns all the results whose timestamp is lower than
its starting timestamp and whose key is not in the tombstone set.
Upon recovery, the list of Nodes is reconstructed using the flags
(its,dts) stored in the PNodes. Reconstruction occurs in a single
pass over the PNodes, freeing the PNodes marked as deleted. If a
filter query was executing, the caller resumes at the appropriate
PNode using variable rp.

Extensions. Leveraging the (lock-free) linked list, implementing
a persistent set is immediate. To construct a skip list, the volatile
nodes should also stores shortcuts. Constructing these shortcuts is
similar to the volatile case [14]. We can also derive a hash table by
implementing each bucket in the map as a persistent linked list.

4 Evaluation

Experimental Set-up. The test machine is a quad-Intel CLX
6230 hyperthreaded 80-core server with 128/512 GB of volatile/per-
sistent memory. NVMM runs in App Direct mode and is formatted
with (DAX) ext4. Our code base spans 6,741 SLOC of C++. It uses
Intel PMDK 1.11.1 and Posix threads. The queryable PDTs are im-
plemented at fine grain using pwb, pfence and psync [12]. For
simplicity, the tombstone set relies on transactions.

An experiment consists in loading a certain amount of items,
then applying concurrently operations. Unless stated otherwise,
each item weights 8 B. Due to space constraints, we only report
experiments with 1M items, 50% of them being loaded at startup.
In an experiment, we spawn a fixed number of threads. At most,
one of them executes a query operation which consists in a 100 us
sleep per item. The other threads randomly perform non-query
operations according to a workload distribution. A label 10/45/45
refers to the distribution GET:10%, INSERT:45% and REMOVE:45%,
while 80/20 refers to GET:80%, INSERT:20%.

We consider two evaluation metrics: (Figure 1) the throughput
of non-query operations; and (Figure 2) the completion time of a
query when the program crashes at around half of the experiment
then recovers, and concurrent non-query operations are executed.
An experiment runs 5 times and we report the average for each
metric. We compare various implementations: (PDT) the queryable
persistent data types; (Volatile) a DRAM base line; (FS) a file system

Muktikanta Sa and Pierre Sutra

(a) 80/20 (b) 80/20
T 25007 TTH Before | | B
ORecovery
2 600l | 2000 |0 After |
L)
g
=S 1,500 [|
£ 400 |
= 1,000 [i
2
£
s
© 200 4 500 H 4
S 0k > i
P 9‘% "@ "@\b N \8@“?' %”:Q%"'

> 8
§ g 0 PPN
QQ O %0 QQAD\Q? < N

Figure 2. Performance of a long-running filter query despite a crash—(left)
for a skip list (SL) and a hash table (HT); (right) using a hash table and

increasing item size.

solution atop NVMM; and (SDD) the same approach using an SSD.
Both file system solutions save progress of a query in the file system.
The volatile solution simply restarts from scratch.

Results & Takeaways. According to Figure 1, both the persis-
tent skip list and hash table are slower than their volatile counter-
parts. Across all workloads, the persistent skip list is on average
5-10% slower, while the persistent hash table is 20-25% slower. This
is expected as NVMM is slower than DRAM, and inline with prior
results (e.g., [15]). In Figure 2(a), we observe that supporting resum-
able queries brings clear performance benefits. Compared to a pure
volatile base line, resumable queries are 40% and 16% faster in the
case of a skip list and a hash table respectively. The approach is also
faster than a file system solution. In Figure 2(b), we compare it to
the two file system implementations using various item sizes. For
an item size of respectively 4 KB, 16 KB and 32 KB, queryable PDTs
are 2.2x/2.4x, 2.3x/3.3x and 2.5x/3.6x faster than a NVMM//SSD file
system solution. We also observe that (i) as expected, PDTs are
not sensible to the item size; and (ii) due to marshalling, a faster
persistent medium brings small performance improvement to a file
system solution (at best 31%).

References

[1] J. Izraelevitz et al. Basic Performance Measurements of the Intel Optane DC
Persistent Memory Module. arXiv, 2019.

[2] Cassandra-pmem. https://github.com/intel/cassandra-pmem/tree/13981.

[3] Pmem-Redis. https://github.com/pmem/pmem-redis.

[4] pmemkv. https://github.com/pmem/pmemkv.

[5] Persistent Mem. Storage Engine for MongoDB. https://github.com/pmem/pmse.

[6] Y. Zuriel et al. Efficient lock-free durable sets. Proceedings of the ACM on
Programming Languages, 3(OOPSLA), 2019.

[7] P.Fatourou et al. Persistent Non-Blocking Binary Search Trees Supporting Wait-
Free Range Queries. Proceedings of the Symposium on Parallelism in Algorithms
and Architectures, SPAA’19, pp. 275-286, 2019.

[8] M. Jarke and J. Koch. Query optimization in database systems. ACM Computing
Surveys, CSUR84, 16(42):111-152, 1984.

[9] B.Lepers et al. Kvell+: Snapshot isolation without snapshots. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation, OSDI’20,
pp. 425-441. USENIX Association, 2020.

[10] J. Kim et al. Long-lived transactions made less harmful. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 20, pp.
495-510. ACM, 2020.

[11] TPC Benchmark H. http://www.tpc.org/tpch.

[12] J. Izraelevitz et al. Linearizability of persistent memory objects under a full-
system-crash failure model. In Proceedings of the Int. Conf. on Distributed Com-
puting, DISC’16. Springer, 2016.

[13] T. L. Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. Pro-
ceedings of the Int. Conf. on Distributed Computing, DISC’01, pp. 300-314, 2001.

[14] W.Pugh. Concurrent Maintenance of Skip Lists. Technical Report CS-TR-2222,
University of Maryland, 1989.

[15] A. Lefort et al.]-NVM: Off-Heap Persistent Objects in Java. In Proceedings of the
Symposium on Operating Systems Principles, SOSP’21, pp. 408—423. ACM, 2021.

