
Computer Architecture and Memory systems Laboratory

CAMELab

Slow is Fast: Rethinking In-Memory Graph Analysis
with Persistent Memory

Hanyeoreum Bae¹, Miryeong Kwon¹, Donghyun Gouk¹, Sanghyun Han¹,
Sungjoon Koh¹, Changrim Lee¹, Dongchul Park², and Myoungsoo Jung¹

KAIST¹, Sookmyung Women’s University²

NVMW ’22

CAMELab

How Much RAM Do We Need?

?

64GB
DRAM

128GB
DRAM

256GB
DRAM

100GB graph

“None of them is sufficient”

CAMELab

Data Amplification

6.71x

Phase #1:
File read

Phase #2:
In-memory graph construction

Phase #3:
Algorithm execution

Observation #1: Runtime data > raw graph data

Temporal
data

structures

raw
graph
file

final
graph
data

3.93x

CAMELab

** Used 192GB DRAM modules

Serious swap overhead

Out of Memory and Memory Expansion Overhead

“Out of memory”

➢ Need to increase the size of system memory

CAMELab

Available Solution: Non-Volatile Memory (NVM)

Intel Optane
Persistent Memory Module (PMEM)
➢ 8x denser than conventional DRAMs

App-Direct mode

Memory mode

CAMELab

App-Direct Mode

User application

DRAM PMEM

App-Direct mode

FSDAX

DEVDAX

DAX
(direct access)

User application

PMEM (App-Direct mode)

Storage stack

Virtual file
system

Page
cache

File system

Block driver

CAMELab

App-Direct Mode

User application

DRAM PMEM

App-Direct mode
User application

PMEM (App-Direct mode)

FSDAX

DEVDAX

DAX
(direct access)

Storage stack

Virtual file
system

Page
cache

File system

Block driver

➢3.70x slower
than DRAM

CAMELab

Memory Mode

User application

DRAM

PMEM

Memory mode

➢Becomes
2.06x slowerStorage

Persistence control
(e.g., checkpointing)

CAMELab

What Is the Best Solution?

2. Minize the overhead
imposed by
data persistence control

Back to the basics:
“Employ a slow
storage stack on PMEM”

Guarantees
• Atomicity
• Consistency
• Isolation
• Durability

1. Maximize the performance
of in-memory graph systems

Natually reaps the
benefits of DRAM caching

User application

PMEM
(App-Direct)

Virtual
file

system

Block driver

File system

Page
cache

CAMELab

Modification of an In-Memory Graph Framework

• Modified Ligra (in-memory graph framework) to make it utilize
the merits of storage stack

Raw mode PMEM
(App-Direct)

Ligra

Block translation table driver

Page cache

Block layer

File

page fault

File system

Virtual
address space

libvmem

vmem pool

CAMELab

What Is the Best Solution?

Observation #2: Storage stack could be the best solution

• D-SW: DRAM + NVMe SSD (swap)
• P-MM: PMEM in the memory mode
• P-APP: PMEM in the app-direct mode + DAX
• P-BLK: PMEM in the app-direct mode + storage stack

CAMELab

Conclusion

• Comprehensive and extensive evaluation with real PMEM devices
to reveal the characteristics and challenges of in-memory graph processing

• Modified Ligra to utilize the benefits of the storage stack
• 4.41x better performance than the Ligra running on a virtual memory expansion

• 3.01x better performance than the Ligra running on a conventional persistent memory

Only two observations
in the presentation

Ten observations
in the full paper

Computer Architecture and Memory systems Laboratory

CAMELab

Slow is Fast: Rethinking In-Memory Graph Analysis
with Persistent Memory

Hanyeoreum Bae¹, Miryeong Kwon¹, Donghyun Gouk¹, Sanghyun Han¹,
Sungjoon Koh¹, Changrim Lee¹, Dongchul Park², and Myoungsoo Jung¹

KAIST¹, Sookmyung Women’s University²

NVMW ’22

