NVMW ’22

Slow Is Fast: Rethinking In-Memory Graph Analysis

with Persistent Memory

Hanyeoreum Bae', Miryeong Kwon?!, Donghyun Gouk*, Sanghyun Han?,
Sungjoon Koh?, Changrim Lee!, Dongchul Park?, and Myoungsoo Jung?

KAIST', Sookmyung Women’s University?

Computer Archltecture and Memory systems Laboratory 'V‘

KAIST EE CAMEL 3D

How Much RAM Do We Need?

W 100GB graph
.., .
DRAM DRAM DRAM

“None of them is sufficient”

CAMELal KAIST

Data Amplification

Phase #1: Phase #2:
File read In-memory graph construction

Phase #3:
Algorithm execution

Normalized
memory usage

o N b O

Execution time (sec)

Observation #1. Runtime data > raw graph data

CAMELal KAIST

Out of Memory and Memory Expansion Overhead

Serious swap overhead

o0
o O
S S

A AN AN

“Out of memory”

N B O
o
o

o
<

Exec. i?me (sec)

c N WS

0

&e—8a—
0 B0 A0 AV 20, &0
Total number of edges

Total /0 Amount
In swap area (GB)

» Need to increase the size of system memory
CANELab KAIST

Available Solution: Non-Volatile Memory (NVM)

App-Direct mode

Intel Optane
Persistent Memory Module (PMEM)
» 8x denser than conventional DRAMs

CAMELal KAIST

App-Direct Mode

App-Direct mode User application ?

—— ? Virtual file Page

User application system cache
[} [§ e TR
NENR NENN) [NNRNNEEN Block driver | DEVDAX__

DRAM PMEM PMEM (App-Direct mode)

DAX

(direct access)

CAMELal KAIST

Storage stack

App-Direct Mode

Norm.
bandwidth

CO00O=

B DRAM [| AppDirect

ONH RO

read write

> 3.70x slower
than DRAM

CAMELal

User application

Virtual file
system

Page
cache

File system

Block driver

Storage stack

FSDAX |

DEVDAX |

PMEM (App-Direct mode)

DAX

(direct access)

KAIST

Memory Mode

/] w/o checkpointing

w/ checkpomtlng
User application? ; .qé %8
oid
o010
< 20.5:

©0.0"BR T

(e.g., checkpointing) [l

-I » Becomes
torage , 2.06x slower

CAMELal KAIST

What Is the Best Solution?

1. Maximize the performance

of in-memory graph systems
— Page Natually reaps the

2. Minize the overhead 4 benefits of DRAM caching

Imposed by
data persistence control . Guarantees
File system . Atomicity
‘ « Consistency
* [solation
_ + Durability
Back to the basics:

"Employ a slow
storage stack on PMEM”

CAMELal KAIST

Modification of an In-Memory Graph Framework

« Modified Ligra (in-memory graph framework) to make it utilize
the merits of storage stack

‘ Ligra

libvmem

Virtual
address space

!

vmem pool

File system

File

Page cache

page fault l

Block layer

l

Block translation table driver

Raw mode PMEM

(App-Direct)

CAMELal

KAIST

What Is the Best Solution?

Exec. time

A Norm. exec. time
= cu
D 40.0k ‘%‘ 3.0 5 ¢
£20.0k2 14 1 4% . D-SW: DRAM + NVMe SSD (swap)
GE) 12.0k A 4 |30 « P-MM: PMEM in the memory mode
£ 9.0k 25 . P-APP: PMEM in the app-direct mode + DAX
c 6.0k A Al |1 8 « P-BLK: PMEM in the app-direct mode + storage stack
o 3.0k 5
% ® = Z @ E
LLl)| al n 0 >

Observation #2: Storage stack could be the best solution

CAMELal KAIST

Conclusion

« Comprehensive and extensive evaluation with real PMEM devices
to reveal the characteristics and challenges of in-memory graph processing

- Modified Ligra to utilize the benefits of the storage stack
* 4.41x better performance than the Ligra running on a virtual memory expansion
« 3.01x better performance than the Ligra running on a conventional persistent memory

Only two observations '
Only two observations Ten observations

in the presentation

in the full paper

CAMELal KAIST

NVMW ’22

Slow Is Fast: Rethinking In-Memory Graph Analysis

with Persistent Memory

Hanyeoreum Bae', Miryeong Kwon?!, Donghyun Gouk*, Sanghyun Han?,
Sungjoon Koh?, Changrim Lee!, Dongchul Park?, and Myoungsoo Jung?

KAIST', Sookmyung Women’s University?

Computer Archltecture and Memory systems Laboratory 'V‘

KAIST EE CAMEL 3D

