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How Much RAM Do We Need?

W 100GB graph
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“None of them is sufficient”
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Data Amplification

Phase #1: Phase #2:
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Algorithm execution
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Observation #1. Runtime data > raw graph data
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Out of Memory and Memory Expansion Overhead

Serious swap overhead
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» Need to increase the size of system memory
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Available Solution: Non-Volatile Memory (NVM)

App-Direct mode

Intel Optane
Persistent Memory Module (PMEM)
» 8x denser than conventional DRAMs
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App-Direct Mode
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App-Direct Mode
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Memory Mode
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What Is the Best Solution?

1. Maximize the performance

of in-memory graph systems
— Page Natually reaps the

2. Minize the overhead 4 benefits of DRAM caching

Imposed by
data persistence control . Guarantees
File system . Atomicity
‘ « Consistency
* [solation
_ + Durability
Back to the basics:

"Employ a slow
storage stack on PMEM”
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Modification of an In-Memory Graph Framework

« Modified Ligra (in-memory graph framework) to make it utilize
the merits of storage stack

‘ Ligra
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What Is the Best Solution?
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Observation #2: Storage stack could be the best solution
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Conclusion

« Comprehensive and extensive evaluation with real PMEM devices
to reveal the characteristics and challenges of in-memory graph processing

- Modified Ligra to utilize the benefits of the storage stack
* 4.41x better performance than the Ligra running on a virtual memory expansion
« 3.01x better performance than the Ligra running on a conventional persistent memory

Only two observations '
Only two observations Ten observations

in the presentation

in the full paper
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