
Slow is Fast: Rethinking In-Memory Graph Analysis with Persistent Memory

Hanyeoreum Bae1, Miryeong Kwon1, Donghyun Gouk1, Sanghyun Han1,
Sungjoon Koh1, Changrim Lee1, Dongchul Park2, and Myoungsoo Jung1

Computer Architecture and Memory Systems Lab,
1Korea Advanced Institute of Science and Technology (KAIST), 2Sookmyung Women’s University

http://camelab.org

I. INTRODUCTION

Efficient computing for large-scale graph data is central
to a broad spectrum of data-intensive applications [1]. To
achieve high performance with low communication and scala-
bility costs, many studies adopt in-memory graph systems [2].
However, without careful consideration of system-level char-
acteristics, graph analysis with large datasets can face a severe
challenges such as out-of-memory error and unreasonable long
latency for its data processing.

In this paper, we explore and uncover the challenges that
in-memory graph processing suffers from. Our system-level
analysis includes empirical results opposite to the existing
expectations of graph application users. Specifically, since raw
graph data are not the same as the in-memory graph data,
processing a billion-scale graph easily exhausts all system
resources and makes the target system unavailable due to out-
of-memory at runtime.

To address this lack of memory space problem, we configure
real persistent memory devices (PMEMs) with different oper-
ation modes and system software. We then introduce PMEM
to a representative in-memory graph system, Ligra [3], and
reveal the performance behaviors of different PMEM-applied
in-memory graph systems. Based on our observations, we
modify Ligra to improve the performance with a solid level of
data persistence. Our evaluation results reveal that our modified
Ligra exhibits 4.41× and 3.01× better performance than the
original Ligra running on a virtual memory expansion and
conventional persistent memory, respectively.

II. MOTIVATION FOR PERSISTENT MEMORY

Graphs for in-memory. Figure 1 briefly shows the overall
process of in-memory graph analysis. All in-memory graph
frameworks first require loading the data, called raw graph,
from the underlying storage to the working memory (1) and
convert the raw graph to in-memory graph structures (2).
These two pre-processes for the graph analysis are referred
to as graph construction. This graph construction is generally
performed to change spatial-efficient format of graph files into
in-memory data structures, which contain extra information for
efficient graph processing. Once the graph construction process
completes, the frameworks can execute graph algorithm(s) to
process the data in memory (3). In the execution phase, the
frameworks are often required to be fault-tolerant as well.
This is because there are several quadratic and cubic graph
algorithms taking the time longer than a mean time between
failures [4]. To this end, in-memory graph systems can employ
a checkpoint-restart, a method that periodically stores the copy
of metadata and progress reports persistently [5].
Persistent memory. Intel Optane PMEM is recently released
in the market as a byte-addressable NVM technology. The
current technology that PMEM adopts offers a capacity 4×
greater than DRAMs on a single server. Specifically, PMEM is
a complex system-level solution, including 3D-Xpoint, DRAM,
and system software to support a large, persistent memory
subsystem. PMEM provides two operation modes; i) memory
mode and ii) app-direct mode.

���������	

���
	

���������

����
	
��
����
�
�����
����

�������
�����

��	
�����
��
��
��
���

��������
�����

�
����
�����

���
����

� � �

Fig. 1: Procedure of
graph framework

0
2
4
6
8

Am
pl
ifi
ca

tio
n

ra
w

G
ra
ph

m
em

G
ra
ph

m
em

Pe
ak

6.71x
3.93x

Fig. 2: Data
amplification.

memPeak

rawGraph memGraph

N
o

rm
a

liz
e

d
m

e
m

.
u

s
a

g
e

Exec. time (sec)

Fig. 3: Time
series analysis.

If the memory mode is enabled, local-DRAM is used as
a direct-mapped write-back cache for 3D-Xpoint modules.
The users can thus experience DRAM-like performance and
access PMEM via the conventional memory instructions (e.g.,
load/store). However, as the memory mode PMEM does not
guarantee data persistence, it needs to utilize additional slow
storage devices (e.g. SSDs) to store data persistently.

On the other hand, PMEM configured with the app-direct
mode splits the memory space into a DRAM space and
a 3D-Xpoint storage space. With this mode, the users can
experience storage-like data persistence by accessing the 3D-
Xpoint space. Unfortunately, it degrades overall performance
by 73%, compared to conventional system (using DRAM).
This is because PMEM in the app-direct mode cannot utilize
the fast performance of local-DRAM. In addition, since app-
direct mode PMEM is exposed to the users over a block
device symbol, it is required to have either conventional storage
stack or PMEM-optimized system software. Recently, many
studies reveal that the conventional storage stack is heavy
and degrades the system performance due to frequent software
interventions. Therefore, recent studies insist on using direct
access (DAX), which removes most software interventions at
the storage stack side. We observe that DAX outperforms the
conventional storage stack with EXT4 by 3.03× and 3.27× for
read and write, respectively. However, since DAX also omits
persistence management, in-memory graph systems need to
“manually” control the system’s data persistence.

III. CHALLENGE: RAW GRAPH DATA != RUNTIME DATA

As the memory capacity becomes more than hundreds of
GB in modern servers, many studies argue that it is affordable
to accommodate most graph data in memory [2]. However, we
observe that the runtime memory requirement is much higher
than what the raw graph demands. Figure 2 normalizes the
graph-related memory requirement to the size of the raw graph
in order to show how much the runtime data is amplified for
the in-memory graph analysis. The final graph data after graph
construction is 3.93× greater than the raw graph (i.e., mem-
Graph), and the memory requirement in the graph construction
is 6.71× as high as the size of the raw data (i.e., memPeak). To
be precise, we perform a time series analysis for the memory
footprint during the graph construction, and the results are
shown in Figure 3. First, right after the graph framework reads
the raw graph, the memory requirement sharply increases,
which is 3.85× higher than the size of the raw graph. This
is because the framework needs to convert the data chunks
to meaningful information such as vertex/edge numbers (i.e.,
long integer) (A). The graph framework then allocates a
heap to generate additional data structures to accelerate graph
processing. This process introduces redundant data copies and

0 10 20 300
2
4
6
8

10
12

0 10 20 300
1
2
3
4

La
te

nc
y

(u
s)

Relative time

 DAX Storage stack
Warm up

DRAM
Caching

La
te

nc
y

(u
s)

Relative time

Warm up
DRAM

Caching

(a) Random
read.

(b) Sequential
read.

Fig. 4: Latency analysis.

����������	

�����

����

����

��

����������

�����

������������

������������

����	����

����

���������	

����������

�����

������

�����

	
��

����

�

�

�������

����	
���
�

�����

����	�	

Fig. 5: Modified software
stack of Ligra.

memory operations, which make the target system need 6.71×
greater memory spaces than what the original graph requires
(B). Lastly, it releases the temporal data structures from the
heap, which address the memory consumption by 41% (C).

Since the actual memory requirement is unknown till the
target framework tries to construct its in-memory structures,
the system can fail to process data at runtime owing to out-
of-memory. To address this runtime error, one may extend
the memory by combining it with the underlying storage as
a memory expansion. However, based on our evaluation, the
execution time becomes unacceptable after the extended virtual
memory begins to perform demand paging as the large amount
of data is issued to the swap partition.

IV. IN-MEMORY GRAPH ANALYSIS WITH PMEM
To process the large graph in a reasonable time without

causing the out-of-memory, we can use PMEM, which is larger
than DRAM, and faster than conventional storage devices. In
this section, we would like to figure out what would be the best
PMEM configuration for the large-scale graph processing.
Enabling raw PMEM with slow storage stack. The best
configuration should be able to maximize the performance
of in-memory graph systems while minimizing the overhead
imposed by persistence control. Instead of using either the
DAX-enabled app-direct mode or memory mode, we here
introduce raw PMEM (e.g., block storage) to in-memory graph
analysis and turn back to employing a slow storage stack on
the raw PMEM. Even though the storage stack is yet slower
than DAX-enabled, app-direct mode PMEM (cf. Section II), it
can buffer and/or cache data in VFS’s page cache that naturally
reaps the benefits of DRAM caching. Note that, once the page
cache warms up, many graph processing operations can be
served by DRAM-like performance, as shown in Figure 4.
Compared to DAX-enabled PMEM, the storage stack enabled
PMEM exhibits 5.36× and 1.62× longer read latency with
random and sequential patterns, respectively, during the initial
phases. However, after the initial phase, the storage stack’s
latency gets close to the latency of DRAM caching, while
DAX exhibits 2.83× and 3.17× worse performance than the
storage stack enabled system. In addition, the legacy file system
guarantees atomicity, consistency, isolation, and durability in
a natural way. Thus, it can minimize the overhead brought by
the hand-worked persistence control as well.
Details of modification. As shown in Figure 5, we mount
PMEM as block storage and replace the heap’s DRAM space
with the raw PMEM that we configured with a legacy file
system (EXT4). We also modify Ligra to generate an invisible
file to the mounted raw PMEM through vmem_create(), a
POSIX-like API provided by libvmem library. It then gen-
erates a virtual memory pool (vmem_pool) by mapping the
invisible file to Ligra’s virtual address space using mmap().
Ligra accesses PMEM’s vmem_pool as its heap memory by
allocating memory through libvmem’s vmem_malloc().
When our modified Ligra accesses an allocated heap memory
at the beginning, it raises a cold miss on the page cache. The
system’s page fault handler then goes through the conventional
storage stack to handle the page fault.

0.0
3.0k
6.0k
9.0k

12.0k
20.0k
40.0k

Ex
ec

ut
io

n
tim

e
(s

ec
)

N
or

m
. e

xe
cu

tio
n

tim
e

N
or

m
. e

xe
c.

 ti
m

e
Ex

ec
. t

im
e

D
R

AM
-S

W
PM

EM
-M

M
PM

EM
-A

PP
PM

EM
-B

LK

0
1
2
3
4
54.4

1.4
3.0

1

(a) Execution time.

0
20
40
60
80
100

 A
lg

o.
 C

hk
pt

.
 C

on
st

.
 L

oa
d

Ex
ec

ut
io

n
tim

e
(%

)

D
R

AM
-S

W

PM
EM

-A
PP

PM
EM

-M
M

PM
EM

-B
LK

(b) Execution time breakdown.
Fig. 6: Execution time analysis (8.6B edges).

V. EVALUATION AND CONCLUSION

We configure four in-memory graph systems: 1) D-SW
extends the memory by enabling swap partition on SSDs. 2)
P-MM and 3) P-APP configure PMEM in the memory mode
and app-direct mode, respectively. 4) P-BLK uses the modified
Ligra with raw PMEM and storage stack. To analyze the
performance, we execute seven graph algorithms with Ligra
back to back: BC, BFS, CC, MIS, Radii, PR, and Tri. The
node that we used for the evaluations contains four 3.9GHz
CPU sockets, each employing 1.5 TB 3D-Xpoint and 192GB
local-DRAM. The node also utilizes four 1.8 TB NVMe SSDs
for memory expansion and external storage. Metadata for
checkpoint-restarts are located in the slow NVMe SSDs for
D-SW and P-MM, whereas they are served from 3D-Xpoint
for P-APP and P-BLK, which provide persistence.

Figures 6a and 6b show the execution time and correspond-
ing latency decomposition, respectively. Since P-BLK takes
both large storage capacity and DRAM caching, it exhibits
77% and 67% shorter execution time compared to D-SW and
P-APP, respectively. Furthermore, P-BLK also outperforms P-
MM, which takes the full advantage of large memory capacity
and DRAM caching. This is because P-BLK can accelerate
the checkpointing process using its persistent 3D-Xpoint space,
while P-MM needs to access slow SSDs.

In this paper, we explore the challenges of in-memory
graph processing. We also conduct comprehensive evaluations
with real PMEM devices to understand behaviors of different
operation modes and system software frameworks to enable
PMEM. We finally modify Ligra to satisfy the requirement of
graph processing performance and data persistence in memory.

VI. ORIGINAL PUBLICATION

H. Bae, M. Kwon, D. Gouk, S. Han, S. Koh, C. Lee, D.
Park and M. Jung. 2021. Empirical Guide to Use of Persistent
Memory for Large-Scale In-Memory Graph Analysis. IEEE
ICCD. https://bit.ly/3IANLnS

VII. ACKNOWLEDGEMENT

This research is mainly supported by NRF
2021R1AC4001773, IITP 2021-0-00524, and IITP 2022-
0-00117. The work is also supported in part by S3RC Hynix
Center, SK-Hynix (G01200477), ETRI (21ZS1300), and
KAIST start-up package (G01190015). D. Park is funded by
NRF 2020R1F1A1048485. Other product names used in this
publication are for identification purposes only and may be
trademarks of their respective companies. Myoungsoo Jung is
the corresponding author.

REFERENCES

[1] E. Abdelhamid et al., “Scalemine: Scalable parallel frequent subgraph
mining in a single large graph,” in IEEE SC, 2016.

[2] J. Chhugani et al., “Fast and efficient graph traversal algorithm for cpus:
Maximizing single-node efficiency,” in IEEE IPDPS, 2012.

[3] J. Shun et al., “Ligra: a lightweight graph processing framework for shared
memory,” in ACM SIGPLAN PPoPP, 2013.

[4] S. Hougardy, “The floyd–warshall algorithm on graphs with negative
cycles,” Information Processing Letters, 2010.

[5] J. Xue et al., “Seraph: an efficient, low-cost system for concurrent graph
processing,” in ACM HPDC, 2014.

