
LineFS: Efficient SmartNIC Offload of a
Distributed File System with Pipeline Parallelism

Jongyul Kim1 Insu Jang2 Waleed Reda3,4 Jaeseong Im1 Marco Canini5

Dejan Kostić3 Youngjin Kwon1 Simon Peter6 Emmett Witchel6,7
1KAIST 2University of Michigan 3KTH Royal Institute of Technology 4Université catholique de Louvain

5KAUST 6The University of Texas at Austin 7Katana Graph

I. INTRODUCTION AND CHALLENGES

In multi-tenant systems, the CPU overhead of distributed stor-
age services sharing the machine with the applications using
them is increasingly a burden to application performance.
Due to the stagnation of CPU performance, operators wish
to dedicate as many client CPU cycles to applications as
possible. However, as storage services incorporate persistent
memory (PM) [1], CPU contention has increased. To exploit
PM performance, recent PM-optimized distributed file system
(DFS) proposals deploy their applications on the machine
where PM is installed (client-local PM). In this type of
DFS [2], [3], client-local storage management such as parallel
data cache eviction, indexing, and log garbage collection
consumes several cores on IO-intensive client nodes.

To reduce CPU overhead, offload of disaggregated storage
stacks is already commonplace. SmartNICs are popular for
this purpose because they provide additional processing power
and can implement the data path for disaggregated storage
operations. SmartNICs support remote direct memory access
(RDMA) [4] that allows access to local and remote PM at byte-
granularity. However, none of the existing solutions consider
the offload needs of a complete DFS.

We present LineFS, a SmartNIC-offloaded and high-
performance DFS with support for client-local PM. LineFS
offloads processing-intensive DFS tasks, such as replication,
data publication (§ II), and consistency management. LineFS
reduces file system fail-over time by providing a fast failure
detector and SmartNIC-based recovery mechanism, leveraging
the SmartNIC as an isolated failure domain.

Offloading a DFS to a SmartNIC is challenging. File
systems are complex, handling highly structured data with
sophisticated access protocols for consistency and durability.
Wimpy SmartNIC architecture and the PCIe interconnect
that separates SmartNIC and host PM implies that a naive
offload of DFS operations will be much slower than using
host CPUs. To make offload worthwhile, LineFS must hide
execution and data access latencies by exploiting opportunities
for parallelization, batching, and asynchronous operation.

II. LINEFS DESIGN

The main design goals of LineFS include minimizing host
performance interference and slowdown from offload. Like
Assise [2] and Orion [3], LineFS adopts a client-local DFS
model that executes DFS functionality on client machines
to avoid client-server communication latency for PM access.
LineFS nodes consist of two components: LibFS and NICFS.

Kernel worker
Host

NICFSSmart
NIC

Log A Log B Log area
publish

RPCRPC

read/writePM
LibFS
App A

Public area
DMA copy

replicate

LibFS
App A

Fetching

Validation

Publication

ACK

1

2

3

4 Chk2 Chk3Chk1

Chk1 Chk2 Chk3

Chk1 Chk2 Chk3

Chk1 Chk2 Chk3
waits for ordering

Host to SmartNIC

In SmartNIC

In Host

SmartNIC to Host

Chk: chunk

Fig. 1: Components and data path of a LineFS node (top). Publishing
pipeline (bottom).

LibFSes are linked to application processes (LineFS clients)
running on host cores. NICFS runs on SmartNICs (Figure 1).

Beyond per-node offload, LineFS follows Assise’s design
closely. Ideas, such as user-level PM IO with per-process LibF-
Ses and update logs, leases [5] as a consistency mechanism,
and chain-replication via RDMA are inherited from Assise [2].
LineFS also runs a cluster manager to manage DFS node
membership, failure detection, and root lease arbitration.

To avoid the overhead for offloading, LineFS follows two
design principles: persist-and-publish and pipeline parallelism.
Persist-and-publish. LineFS assigns a fraction of PM as a
per-client PM log (cf. Figure 1). LibFSes persist data and
metadata updates to their private PM logs on the host. The
logs are asynchronously published to a host-local public PM
and replicated to remote PM by NICFS. This design enables
LineFS to clearly separate PM-latency critical operations from
those that can be deferred. After LibFS makes data and
metadata durable in the host PM log using fast host cores,
NICFS publishes and replicates the updates in the background
with SmartNIC cores, saving the host cores from performing
file system management tasks.
Pipeline parallelism. LineFS exploits pipeline parallelism to
publish and replicate the log. LineFS organizes DFS opera-
tions into distinct execution stages to construct an execution
pipeline. LineFS defines a group of log entries as a LineFS
chunk, processing each chunk in parallel through the pipeline.
LineFS leverages the pipeline to publish and replicate each
client-private log while keeping the log data in order (intra-



Streamcluster Solo run Assise Assise-BgRepl LineFS0

20

40

Ex
ec

ut
io

n 
tim

e 
(s

)

1,000
1,200
1,400
1,600
1,800

Th
ro

ug
hp

ut
 (M

B/
s)

Streamcluster execution time (primary)
Streamcluster execution time (replica)

Throughput

Fig. 2: Impact of DFS co-execution on streamcluster execution
time (left Y-axis) and DFS throughput (right Y-axis).
client parallelism). At the same time, it processes multiple
client logs concurrently by executing the pipeline for each
client in parallel (inter-client parallelism).

Together, these principles not only avoid overhead but also
maintain consistency when offloading. Client logs are a natural
way to persist file system updates in order. When publishing
and replicating, pipeline parallelism allows LineFS to process
data in client log order, providing linearizability and prefix
crash consistency [6].

Two pipelines, the publishing pipeline (Figure 1) and the
replication pipeline, have to fetch log data to NICFS and
validate it. They share the first two stages (fetching, validation)
and after the two, they run their own pipeline stages.

The persist-and-publish model allows NICFS to publish
the client-private log in the background, while application
execution continues. After publishing log entries, LibFS re-
claims them to make room for further updates. To amortize
PCIe transfer overheads, LineFS batches consecutive updates
into LineFS chunks. As soon as LibFS has accumulated a
single LineFS chunk of updates, it sends an asynchronous
RPC request to NICFS to fetch the chunk. NICFS fetches
a LineFS chunk to the SmartNIC’s memory and validates
it. After passing the validation, NICFS publishes the LineFS
chunk and acknowledges it to LibFS.

Publishing the chunk via PCIe causes excessive latency,
stalling the pipeline. Instead, LineFS uses a kernel worker
in the host operating system to initiate asynchronous host
DMA [7] to publish the chunk. Instead of copying PM with
host cores, the DMA copy still avoids CPU utilization.

LineFS replicates primary’s client-private log to replicas
using RDMA, providing availability and strong consistency
among replicas. Like other DFSes, fsync() guarantees dura-
bility and replication of file data and metadata. LineFS uses
the SmartNIC to asynchronously and proactively replicate log
entries before LibFS calls fsync(). On fsync(), LineFS
synchronously replicates any remaining log entries. Similar to
the publishing pipeline, LineFS parallelizes replication with
4-stages pipeline (fetching, validation, transfer, acknowledg-
ment). Additionally, LineFS improves latency by dedicating a
SmartNIC core for RDMA processing with busy-polling.

III. EVALUATION

Our evaluation testbed consists of 3× Intel Xeon Gold 5218
servers at 2.3 GHz with 16 cores, 96 GB DDR4-2666 DRAM,
6× 128 GB Intel Optane DC persistent memory modules, and
Mellanox BlueField SmartNIC (16 ARMv8 A72 cores, 16 GB
DRAM, and 25Gbps network bandwidth with RDMA). All
nodes run Ubuntu 18.04 with Linux kernel version 5.3.

We compare LineFS with Assise [2], a state-of-the-art
DFS that supports client-local PM access. Assise-BgRepl
additionally replicates in the background before fsync()
is called with multiple threads and the same 4MB chunk
size, akin to LineFS replication but without pipelining. We
configure the PM log size to 512 MB for both Assise and
LineFS. Both DFSes use 3 nodes; primary, replica-1, and
replica-2. We run two throughput benchmarks as DFS clients.
Each single-threaded client writes file data to a 12 GB file with
16 KB IO size sequentially and calls fsync at the end. We
run streamcluster from PARSEC 3.0 [8] in all nodes
to mimic CPU-intensive jobs running together with DFSes.
To stress the host cores, we set the number of threads for
streamcluster equal to the number of host cores.

Figure 2 presents the streamcluster execution
time and the microbenchmark throughput. When running
streamcluster with Assise, Assise degrades the per-
formance of streamcluster by 72% in the primary and
66% in replicas due to resource contention. The primary,
where the DFS clients run, uses more host CPU and memory
resources, causing a more severe slowdown than on the repli-
cas. Assise-BgRepl improves Assise’s throughput by
18%, limited by contention with streamcluster. LineFS
shows the best throughput (46% better than Assise) due to
the pipeline parallelism and the background replication. At the
same time, it incurs minimal slowdown of streamcluster
(49% and 19% slowdown compared to the solo run for primary
and replica, respectively) by means of the SmartNIC offload-
ing. This result confirms that LineFS’s design minimizes host
performance interference while providing good performance.

IV. CONCLUSION

LineFS proposes the persist-and-publish model and pipeline
parallelism to offload a PM-optimized DFS to SmartNICs. We
implement LineFS on the BlueField SmartNIC and compare
it to Assise, a state-of-the-art PM DFS. LineFS achieves
46% better I/O throughput while improving host application
performance by up to 40% when host CPU resource is scarce.
This work has been published in SOSP 2021 [9].

REFERENCES

[1] Intel Optane memory. [Online]. Available: http://www.intel.com/content/
www/us/en/architecture-and-technology/optane-memory.html

[2] T. E. Anderson, M. Canini, J. Kim, D. Kostić, Y. Kwon, S. Peter, W. Reda,
H. N. Schuh, and E. Witchel, “Assise: Performance and availability via
client-local NVM in a distributed file system,” in OSDI’20.

[3] J. Yang, J. Izraelevitz, and S. Swanson, “Orion: A distributed file system
for non-volatile main memory and rdma-capable networks,” in FAST’19.

[4] Rdma consortium. [Online]. Available: http://www.rdmaconsortium.org
[5] C. Gray and D. Cheriton, “Leases: An efficient fault-tolerant mechanism

for distributed file cache consistency,” in SOSP’89.
[6] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam, L. Alvisi,

and M. Dahlin, “Robustness in the salus scalable block store,” in NSDI’13.
[7] T. Le, J. Stern, and S. Briscoe. Fast memcpy with SPDK and

intel I/OAT DMA engine. [Online]. Available: https://software.intel.com/
en-us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in PACT’08.

[9] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić, Y. Kwon, S. Peter,
and E. Witchel, “Linefs: Efficient smartnic offload of a distributed
file system with pipeline parallelism,” in SOSP’21. [Online]. Available:
https://doi.org/10.1145/3477132.3483565

http://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
http://www.rdmaconsortium.org
https://software.intel.com/en-us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine
https://software.intel.com/en-us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine
https://doi.org/10.1145/3477132.3483565

	Introduction and Challenges
	LineFS Design
	Evaluation
	Conclusion
	References

