
HAMS: Hardware Automated Memory-over-Storage for
Large-scale Memory Expansion

Jie Zhang1, Miryeong Kwon2, Donghyun Gouk2, Sungjoon Koh2, Nam Sung Kim3

Mahmut Taylan Kandemir4, Myoungsoo Jung2

Computer Architecture and Memory Systems Laboratory,
Peking University1, Korea Advanced Institute of Science and Technology (KAIST)2

University of Illinois Urbana-Champaign3, Pennsylvania State University4

http://camelab.org
I. INTRODUCTION

Large persistent memories such as NVDIMM have been perceived
as a disruptive memory technology, because they can maintain
the state of a system even after a power failure and allow the
system to recover quickly. However, the existing persistent memories
either suffer from the poor performance or are constrained by poor
scaling. One may leverage the existing OS memory management to
construct a large persistent memory space by hybriding NVDIMM
and SSD. Unfortunately, overheads incurred by a heavy software-
stack intervention seriously negate the benefits of such designs.

Tackling the aforementioned limitations, we propose HAMS, a
hardware automated Memory-over-Storage (MoS) solution. Specif-
ically, HAMS aggregates the capacity of NVDIMM and ultra-low
latency flash archives (ULL-Flash) into a single large memory space
(cf. Figure 1), which can be used as a working memory expansion or
persistent memory expansion, in an OS-transparent manner. HAMS
resides in the memory controller hub and manages its MoS address
pool over conventional DDR and NVMe interfaces; it employs a
simple hardware cache to serve all the memory requests from the
host MMU after mapping the storage space of ULL-Flash to the
memory space of NVDIMM. Second, to make HAMS more energy-
efficient and reliable, we propose an “advanced HAMS” which
removes unnecessary data transfers between NVDIMM and ULL-
Flash after optimizing the datapath and hardware modules of HAMS.
This approach unleashes the ULL-Flash and its NVMe controller
from the storage box and directly connects the HAMS datapath to
NVDIMM over the conventional DDR4 interface. Our evaluations
show that HAMS and advanced HAMS can offer 97% and 119%
higher system performance than a software-based NVDIMM design,
while costing 41% and 45% lower energy, respectively.

II. RELATED WORK AND CHALLENGES

Baseline architecture for persistent memory expansion. One
common solution to build a large and scalable, yet persistent memory
space is to use a type of NVDIMM (i.e., NVDIMM-N) together with
SSD and memory-mapped files (MMFs), which can be implemented
in an OS memory manager or a file system (cf. Figure 1). Figure 2
illustrates the software support and storage stack that user applications
require for expanding NVDIMM with SSD. The memory-mapped file
(MMF) module in Linux, also referred to as mmap, can be used to
expand the persistent memory space of NVDIMM with SSD. If a
process calls mmap with a file descriptor (fd) for SSD (1), the MMF
creates a new mapping in its process address space, represented by a
memory management structure (mm_struct), by allocating a virtual
memory area (VMA) to the structure (2). In other words, the MMF
links fd to the VMA, by establishing a mapping between the process
memory and the target file. When the process accesses the memory
designated by the VMA (3 4 5), this triggers a page fault (if the
data is not available in NVDIMM). When a page fault occurs, the
page fault handler is invoked and allocates a new page to the VMA.
Since the VMA is linked to the target file, the page fault handler
retrieves the file metadata (inode) associated with fd and acquires
a lock for its access (6). The MMU interacts with a fault handler
of the file system to read a page from the SSD (7 8 9). Once the
actual data is loaded into a new region of the allocated page memory,

���

������	� �

	����

���������

�����������

����� �	����

������	�!��	" ��#������

����������	
����

��
�

��$� ��$�

%�&'��

() �� *�+

������	�

""�

���

Fig. 1: NVDIMM-N vs. HAMS.

������

���

�	�
	�

�
�
�

�

❼

�

���������

���������

��������	��

�����

�❽

�❻

�❾

��������	��
���

�		

�������

��

	
�

	
�

	
�

���

�❶

���

❷

�❸

�

�

�

�

�

�❹

����
�����

����

�����

�

�	��
����

����

�

�

�

	

�

�

�

�

�

�

	

�

�

�

�❺

��

����

���

�� ��

��

	

�

�

�

�

�

�

�����

�		

Fig. 2: Software support.

the page fault handler creates a page table entry (PTE), records the
new page address in the PTE, and resumes the process.
Challenges. To evaluate the performance of an existing software-
based memory expansion, we configure an MMF-based host system
with the real devices. The SSD (i.e., ULL-Flash) is used to expand
memory space over mmap. Figure 3a decomposes the execution time
of user applications into a mmap processing time (i.e., context switch
and page fault handling), an I/O stack time (i.e., filesystem, blk-mq
layer, and NVMe driver), a ULL-Flash access time, and an application
computation time. For better understanding, the figure also analyzes
how much the ULL-Flash-based MMF system degrades the overall
performance, compared to the NVDIMM-based system. The system
overhead imposed by MMF (mmap and I/O stack) accounts for 69%
of the total execution time. This is because MMF is involved in many
software operations including multiple page fault handling, context
switches, address translations (i.e., page table, filesystem and FTL),
boundary checks, and permission checks [3]. The context switches are
one of the main contributors to increase I/O latency [5]. On the other
hand, the queuing mechanism and NVMe communication protocol
in I/O stack are optimized for throughput rather than I/O latency [6].
The software operations of MMF consume 15∼20 us [3], which is
around 6× longer than ZNAND access latency (3 us).

III. MEMORY OVER STORAGE

The goal of HAMS is to (1) remove the mmap and storage stack
overheads from the MMF-system and (2) reduce the number of stalled
instructions by caching the memory references in NVDIMM directly
and by automating the mapping between ULL-Flash and NVDIMM.

A. Overview of HAMS Designs

Figure 3b shows the baseline architecture of HAMS. HAMS re-
sides in MCH, which implements an address manager, an NVDIMM
memory controller and PCIe root complex. The address manager
offers a 64-bit byte-addressable address space by exposing the storage
capacity of ULL-Flash to MMU. It also utilizes a memory space of
NVDIMM as an inclusive cache for ULL-Flash with an integrated

rn
dR

d

rn
dW

r

se
qR

d

se
qW

r

rn
dI

ns

se
qI

ns

up
da

te

rn
dS

el

se
qS

el
0.0

0.2

0.4

0.6

0.8

1.0

E
x
e
c
u
ti
o
n
 b

rk
d
o
w

n

mmap I/O stack SSD CPU

0

50

100

a
g
a
in

s
t
N

V
D

IM
M

 (
%

)
P

e
rf

.
d
e
g
ra

d
a
ti
o
n

(a) Software overheads.

������ ����	
��

��������	

����	

���

�	����

���

���

��
�
��
	

�
�
��
	
�
��
�
�
��

���

��� ��� ���

���������

����
�	
��	��

������

����������
����

���	���
�	
��	��

�������

���

�����������

�����
������
�
��
�

���

�
�
�
��

�

����

�
�
�

(b) Overview of baseline HAMS.

���

��� ��� ��� ���

����

������

��
��
�	

�

���

���
�	
��������
	

����
�
��	��
����	���
	

�������
�
�
	���	

��	
�
�����

�	
�������������

�������

����

�
����	��
����

�����	
���

�
�
�
��
��
�
�

�
�
�

�
��
��

�
�

�
�
�
�

(c) Aggressive integration.
Fig. 3: Software overheads of using MMF, the overview of baseline HAMS and the aggressive integration.

10k 20k 30k 40k 50k 60k 70k0.0
5.0x10

4
1.0x10

5
1.5x10

5
2.0x10

5
2.5x10

5

A
p
p
 p

e
rf

.
(p

a
g
e
s
/s

)

Accessed pages

 mmap optane-P lhams-E thams-E

Fig. 4: Performance analysis.
tag-array. To implement MoS, the address manager employs a simple
hardware cache logic that coordinates NVDIMM and ULL-Flash to
serve incoming memory requests. In case that a memory request
generates an NVDIMM cache miss, HAMS migrates the target
data from ULL-Flash to NVDIMM cache by managing the NVMe
commands and I/O request queues internally. This design can hide
all the NVMe protocol and interface management overheads from the
OS. Once the data transfer from ULL-Flash to NVIDMM (or vice
versa) is completed, HAMS informs MMU of the completion so that
MMU can retry the stalled instruction.

B. Aggressive Integration of HAMS
While the baseline design of HAMS can offer a 20GB/s peak

bandwidth, it can still yield sub-optimal system performance, espe-
cially when running large-scale data-intensive applications due to the
following inefficiencies: (1) the overheads imposed by data transfer
and (2) the energy inefficiency brought by the SSD-internal DRAM.
To address these challenges, we propose to remove the SSD-internal
DRAM that is used for data buffering, introduce a new register-
based interface (instead of doorbell registers and PCIe BARs), and
connect ULL-Flash to DRAM PHY (instead of PCIe). Note that
writes to ULL-Flash are already reduced without employing the
SSD-internal DRAM as the incoming data are buffered/cached by
NVDIMM. Similarly, the address mapping table is also buffered in
the NVDIMM. Accessing the mapping information only consumes a
tCL and a few tBURST periods (less than 20ns), which is ignorable
compared to the long ULL-Flash access latency. As shown in Figure
3c, this aggressive integration of NVDIMM and ULL-Flash, which
we call advanced HAMS, allows the NVMe controller to directly
access the DRAM modules over the DRAM interface. Specifically,
to be compatible with the synchronous DDR4 interface, the NVMe
controller avoids unpredictable delay of the underlying Z-NAND
accesses by employing a set of registers to buffer the command,
address, and data. For communications, the address manager employs
an SSD command generation logic that writes a set of registers
capturing the source and destination addresses and I/O command,
based on the I/O request that HAMS needs to initiate.
(3) lhams-E employs the designs of baseline HAMS. (4) thams-E
is an advanced HAMS system with aggressive integration.

IV. EVALUATION AND CONCLUSION

Experiment. We use a full system simulator (gem5 [1]) and an
SSD simulator (Amber [2]) to explore the design space of the
HAMS enabled systems. We then build four computing platforms
for evaluation: (1) mmap employs an ULL-Flash and a NVDIMM
as its storage and memory media, respectively. It accesses data
directly from the persistent storage by using the MMF module. (2)
optane-P [4] employs 512GB Optane DC PMM as main memory.

Performance. Figure 4 plots the application-level performance vari-
ation when executing workload “seqRd”. In this graph, the x-axis
shows the number of accessed pages, and the y-axis shows the
performance in terms of pages per second. mmap exhibits poor
performance at the beginning of the execution, and it takes a long
time to reach its best performance. This is because, all pages initially
reside in SSD and mmap fetches the pages on demand. Thus, it
takes a lot of time to fully fetch all the pages in the working set
from the NVMe SSD into the main memory. In contrast, as all data
reside in the persistent memory, optane does not suffer from cold
misses. lhams-E experiences poor performance at the beginning of
the execution. However, unlike mmap, it takes a much shorter time for
lhams-E to reach the full bandwidth. This result indicates that the
storage access has less penalty to lhams-E, as it eliminates the OS
intervention in accessing the storage. thams-E achieves promising
performance throughout the execution, as it can successfully hide the
penalty of cold misses in the NVDIMM caches. Note that the best
performance of thams-E is better than lhams-E and mmap by
16% and 4.8x, respectively.

In conclusion, we proposed HAMS to aggregate the storage
capacities of NVDIMM and ULL-Flash into a single large memory
space, which can be used as a memory expansion. We also optimized
HAMS by modifying its datapath and hardware modules, which
makes HAMS more energy efficient and reliable. Our HAMS and
advanced HAMS architectures improve the performance by 97%
and 119%, respectively, compared to the software-based hybrid
NVDIMM design.

V. ORIGINAL PUBLICATION

J. Zhang J, M. Kwon, D. Gouk, S. Koh, NS Kim, MT Kan-
demir and M. Jung. 2021. Revamping storage class memory with
hardware automated memory-over-storage solution. IEEE ISCA.
https://arxiv.org/pdf/2106.14241.pdf

VI. ACKNOWLEDGEMENT

This research is mainly supported by NRF 2021R1AC4001773
and IITP 2021-0-00524 & 2022-0-00117. The work is also sup-
ported in part by KAIST start-up package (G01190015), NRF
2016R1C182015312, and MemRay grant (G01190170). Dr. Kan-
demir is supported in part by NSF grants 1908793, 1629129,
2028929, and 1931531. Other product names used in this publication
are for identification purposes only and may be trademarks of their
respective companies. Myoungsoo Jung is the corresponding author.

REFERENCES

[1] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH, 2011.
[2] D. Gouk et al., “Amber: Enabling precise full-system simulation with

detailed modeling of all ssd resources,” IEEE MICRO, 2018.
[3] J. Huang et al., “Unified address translation for memory-mapped ssds

with flashmap,” in IEEE ISCA, 2015.
[4] J. Izraelevitz et al., “Basic performance measurements of the intel optane

dc persistent memory module,” https://arxiv.org/abs/1903.05714, 2019.
[5] D. Le Moal, “I/o latency optimization with polling,” in Vault Linux

Storage and Filesystems Conference, 2017.
[6] J. Zhang et al., “Flashshare: Punching through server storage stack from

kernel to firmware for ultra-low latency ssds,” in OSDI, 2018.

https://arxiv.org/abs/1903.05714

	Introduction
	Related Work and Challenges
	Memory Over Storage
	Overview of HAMS Designs
	Aggressive Integration of HAMS

	Evaluation and Conclusion
	Original Publication
	Acknowledgement
	References

