
Integrating New Photonic-Based Heterogeneous Memory into
Throughput Accelerators

Jie Zhang1 and Myoungsoo Jung2

Computer Architecture and Memory Systems Laboratory,
Peking University1, Korea Advanced Institute of Science and Technology (KAIST)2

http://camelab.org
I. INTRODUCTION

Graphics processing units (GPUs) have been widely adopted as
an efficient accelerator hardware platform to speed up the execution
of large-scale data-intensive applications. While massively parallel
computing power of a GPU can enhance data processing bandwidth,
its memory system is difficult to satisfy increasing I/O demands of
the large-scale applications. Specifically, DRAM faces many practical
challenges to scale their technology down, and it cannot be denser
due to memory retention time violations, insufficient sensing margins
and low reliability issues [1].

To address these challenges, we propose Ohm-GPU, a new optical
network based heterogeneous memory design for GPUs. Specifically,
Ohm-GPU can expand the memory capacity by combing a set
of high-density 3D XPoint and DRAM modules as heterogeneous
memory. To prevent memory channels from throttling throughput
of GPU memory system, Ohm-GPU replaces the electrical lanes
in the traditional memory channel with a high-performance optical
network. However, the hybrid memory can introduce frequent data
migrations between DRAM and 3D XPoint, which can unfortunately
occupy the memory channel and increase the optical network traffic.
To prevent the intensive data migrations from blocking normal
memory services, Ohm-GPU revises the existing memory controller
and designs a new optical network infrastructure, which enables the
memory channel to serve the data migrations and memory requests
in parallel. Our evaluation results reveal that Ohm-GPU can improve
the performance by 27%, compared to the baseline optical network
based heterogeneous memory system.

II. RELATED WORK AND CHALLENGES

Baseline GPU Architecture. Figure 1 shows a baseline GPU archi-
tecture, which is similar to the real-world GPU products. Specifically,
the baseline GPU consists of multiple streaming multiprocessors
(SMs), shared L2 cache and memory controllers, all of which are
connected through an interconnect network. Within the SMs, a group
of 32 threads, called warp, are executed in a lockstep. During the
execution, a set of instructions for each warp is fetched from the
underlying GPU memory. The instructions are then decoded and
stored in the register files. Afterwards, the warp scheduler schedules
the warps to execute. Arithmetic instructions are executed by ALUs,
while load/store instructions generate memory requests. SMs firstly
try to find out data associated with the memory requests from
L1D cache. If L1D cache misses, the requests will be forwarded
to the shared L2 cache via the interconnect network. If L2 cache
also misses, the requests will be sent to the memory controller. A
traditional GPU memory controller in practice buffers and schedules
incoming memory requests. The memory controller issues the mem-
ory transactions with DRAM via GDDR6 protocol.
Challenges in GPU Memory System. The existing GPU memory
system becomes the performance bottleneck of executing large-scale
applications in the GPU due to its low capacity, limited throughput,
and high energy consumption [4]–[6]. As the GPU on-chip DRAM
cannot accommodate all data sets of large-scale applications, the
data often require being loaded/stored from/to an external storage.
To be precise, we evaluated a computing system that integrates a
high-performance GPU and an SSD together. Figure 2a shows a
breakdown analysis to execute different GPU applications on our
testbed system. The storage access delay and data transfers between

���
������

�	
�

�
�
�
��
�

�����

���	��

�	�

�
�
	
�

�
��

������������

����

���
���

��
�����

��
�
�
�
�
�
�
�
�
�
�
��
�
�	

�
�

�� ��	���
������

��������

�����	�

���
�����

�
�
�
	
�

�
�
�
��
�

��	���

������ �	
��
�����

�����

Fig. 1: Overview of baseline GPU architecture.

back
p

lu
d

G
RAM

S

FDTD
betw

bfs
data

bfs
to

po

gct
opo

pagera
nk

ss
sp

0
20
40
60
80

100

E
x
e
.

ti
m

e
 b

rk
d
o
w

n
 (

%
)

 Data move Storage GPU

(a) GPU-SSD integrated system.

back
p

lu
d

G
RAM

S

FDTD
betw

bfs
data

bfs
to

po

gct
opo

pagera
nk

ss
sp

0

50

100

G
P

U
 m

e
m

 e
x
e

.
b

rk
d

o
w

n DMA DRAM accesses

10

20

30

40

50

E
n

e
rg

y
 f

ra
c
ti
o

n
 o

f
D

M
A

(b) GPU memory subsystem.
Fig. 2: Breakdown analysis of executing GPU apps.

the GPU and SSD account for 21% and 45% of the total execution
time, on average, respectively. This data movement overhead takes a
time longer than the GPU computing time itself by 2.3×, on average.
We also analyze the impact of DMA and DRAM accesses on the GPU
memory system in terms of execution time and energy consumption,
and the results are shown in Figure 2b. Transferring data via electrical
memory channels (i.e., DMA) degrades the performance of the GPU
memory system by 31% and 19% in terms of execution time and
energy consumption, respectively.

III. OHM-GPU ARCHITECTURAL DESIGN

Figure 3a shows an overview of our baseline Ohm-GPU design.
Compared to the traditional GPU (cf. Figure 1), Ohm-GPU integrates
a new memory system, called Ohm memory system, to replace the
existing DRAM-based GPU memory system. Specifically, the Ohm
memory system employs DRAM and XPoint as a heterogeneous
memory to increase the memory capacity while maintaining high per-
formance. DRAM in Ohm-GPU also accommodates write-intensive
data, which can significantly reduce the number of writes on XPoint,
thereby extending the lifetime of XPoint. To improve the bandwidth
and energy consumption behaviors of the memory system, Ohm-GPU
also integrates an optical infrastructure, which jointly connects the
memory controllers and the memory devices.
Optical infrastructure for Ohm-GPU. Figure 3b shows a high-level
overview of our optical infrastructure design. An optical channel
replaces hundreds of electrical lanes to connect between the GPU
memory controllers and memory devices. Directly attaching multiple
memory controllers to a single optical channel can introduce channel-
level conflicts, as these memory controllers can compete to occupy
the same optical channel. To address this challenge, we statically
split the optical channel into multiple virtual channels and assign
a dedicated virtual channel to each memory controller. While the
virtual channels ensure no channel conflicts among all memory
controllers, the transmitters and receivers of massive memory devices
may compete to occupy a virtual channel. To address this, we leverage

�������

��������	
�

��������		��
���

	
� 	
��
�
��
��
��
	

��

�
�

	
�

�
�
�
��
�
��

�
	

�
�����������

��������

�����
�����

	
� 	
�
�� ���

������

�����
�������
�������

����������

����������

�������������

��������

�
��
�
��
��

� ����

����������

������

��
�
�
�
�
�
�

�
�

�

��

�
�
�

 !"

��

#$%
�������
���&��'
$���
�����(
�������)#�%
����*�+
������������)

��

 !"

�������
�������������

�����������������

�������,��
�������

������
$�����

��������,��
�������

-����
$�����

 ����
��(��

�������

��(��

#�%
.�&
������
�����)

Fig. 3: Overview of Ohm-GPU architecture with an Ohm memory system.

1 2 3 4 5 6 7 80.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
o
rm

.
p
e
rf

o
rm

a
n
c
e

Optical waveguides

 Ohm-base

 Ohm-BW
Hetero

Fig. 4: Performance of the evaluated GPU platforms.
the control logic and photonic demultiplexers proposed in [2] to
arbitrate the competition of an optical channel usage.
Integration of DRAM and XPoint. Unfortunately, DRAM and
XPoint cannot be directly attached to the optical channel via the
photonic transmitters and receivers. There are two reasons. Firstly,
the command, address, and data are simultaneously accessed in the
memory devices while all the data are serialized in the optical
channel. Secondly, XPoint requires assistance of a XPoint controller
to enable ECC, manage the endurance of XPoint, and control its
I/O transactions. To make the XPoint and DRAM compatible with
the optical channel, we employ a SerDes circuit to transform data
between serial and parallel I/Os (cf. Figure 3c). We also employ a
small piece of registers (i.e., 16KB) in front of the memory devices
to buffer the data from the optical channel. To integrate XPoint in the
optical channel, one simple solution is to employ a XPoint controller
for each XPoint. However, having multiple XPoint controllers can
increase the area cost, which is critical as the limited GPU space is
concerned. Since XPoint stacks its storage cores into multiple layers,
we can save the area cost by integrating the XPoint controller in
XPoint as a logic layer, which is adopted by several prior logic-in-
memory designs [3].
System Design for Migration Overhead Removal. We observe that
data migration between DRAM and XPoint increases the average
memory access latency by 51%, owing to two main reasons. First,
the data migrations are expensive as the memory controller should
copy all the data to its internal buffer and redirect the data to the
target memory module. Second, as our optical channel is shared by
both data migration and memory requests, data migration consumes
the channel resources, which should be used to serve the memory
requests. To reduce such overheads, Ohm-GPU enables XPoint
controllers to directly migrate data between DRAM and XPoint.
To prevent the memory and XPoint controllers from competing to
access the same DRAM, Ohm-GPU implements a conflict detection
mechanism in the memory controllers, which can detect the potential
conflicts before scheduling the memory requests and data migration
requests. To achieve full utilization of the optical channel, we create
dual routes in the same optical channel to simultaneously serve
the memory requests and the data migration tasks. Our new design
requires minor optical hardware costs and does not increase the total
energy consumption of the target memory system.

IV. EVALUATION AND CONCLUSION

Experiments. We implement Ohm-GPU atop a GPU simulator
(MacSim). To explore a full design space of optical network based
heterogeneous memory subsystems, we replace six 32-bit electrical

memory channels with a single optical channel as default. This
optical channel configuration can provide the same bandwidth as
the traditional electrical memory channels. We implement three
different GPU platforms: (1) Hetero: a baseline GPU architecture
employing an electrical channel integrated heterogeneous memory
system; Hetero leverages the memory controller to migrate data
between DRAM and XPoint; (2) Ohm-base: a baseline GPU
architecture employing an optical network integrated heterogeneous
memory system; (3) Ohm-BW: compared to Ohm-base, it integrates
the system design for migration overhead removal.
Performance. While a single optical waveguide can achieve the
bandwidth same as electrical memory channels of 192 lanes, Ohm-
GPU can employ multiple optical waveguides under the same area
constrains as the electrical memory channels. Figure 4 shows the
performance improvement brought by multiple optical waveguides
in Ohm-GPU. Ohm-base with 8 optical waveguides improves the
system performance than Hetero, by 41%, on average. This is be-
cause employing multiple optical waveguides can significantly reduce
the DMA latency of the heterogeneous memory system. Ohm-BW
also benefits from the increased number of optical waveguides. The
performance improvement can be 17%.

In this work, we propose Ohm-GPU, a new design of optical
network for heterogeneous memory integrated GPU, which can
mitigate the impact of data migration on optical channel. Specifically,
Ohm-GPU decouples the memory controller from the management
of the data migration and leverages the dual routes in optical channel
to prevent data migration from occupying the memory channel.
Our Ohm-GPU can improve the performance by 181% and 27%,
compared to a DRAM-based GPU memory system and the baseline
optical network based heterogeneous memory system, respectively.

V. ORIGINAL PUBLICATION

J. Zhang and M. Jung. 2021. Ohm-GPU: Integrating New Optical
Network and Heterogeneous Memory into GPU Multi-Processors.
IEEE/ACM MICRO. https://github.com/jiezhang-camel/jiezhang-
camel.github.io/blob/master/files/paper5-OhmGPU.pdf

VI. ACKNOWLEDGEMENT

This research is mainly supported by NRF 2021R1AC4001773
and IITP 2021-0-00524 & 2022-0-00117. The work is also sup-
ported in part by KAIST start-up package (G01190015), Samsung
(G01200447) and Samsung HiPER. Other product names used in
this publication are for identification purposes only and may be
trademarks of their respective companies. Myoungsoo Jung is the
corresponding author.

REFERENCES

[1] Y. Kim, “Architectural techniques to enhance dram scaling,” Ph.D. dis-
sertation, CMU, 2015.

[2] Z. Li et al., “Exploring high-performance and energy proportional inter-
face for phase change memory systems,” in HPCA. IEEE, 2013.

[3] M. M. Shulaker et al., “Monolithic 3d integration of logic and memory:
Carbon nanotube fets, resistive ram, and silicon fets,” in International
Electron Devices Meeting. IEEE, 2014.

[4] J. Zhang et al., “Nvmmu: A non-volatile memory management unit for
heterogeneous gpu-ssd architectures,” in PACT. IEEE, 2015.

[5] ——, “Flashgpu: Placing new flash next to gpu cores,” in DAC, 2019.
[6] ——, “Zng: Architecting gpu multi-processors with new flash for scalable

data analysis,” in ISCA. IEEE, 2020.

	Introduction
	Related Work and Challenges
	Ohm-GPU Architectural Design
	Evaluation and Conclusion
	Original Publication
	Acknowledgement
	References

