
Recoverable Software Combining

PANAGIOTA FATOUROU FORTH ICS &UNIVERSITY OF CRETE

NIKOLAOS D. KALLIMANIS FORTH ICS

ELEFTHERIOS KOSMAS UNIVERSITY OF CRETE

0

1

Recoverable Computing

❖ Non-Volatile Main Memory (NVMM)

 byte-addressable

 large and inexpensive

 fast recovery

❖ persistence instructions

 pwb

 expensive

❖ inefficient recoverable implementations

of data structures

 Goal: low persistence overhead

N
O

N
-V

O
LA

TI
LE

DRAM NVMM

SECONDARY

STORAGE

REGISTERS

V
O

LA
TI

LE

Challenge

, pfence, psync

Highly efficient recoverable

blocking and wait-free

❖ synchronization protocols

 outperform by far (up to 3.9x) many recently proposed recoverable UCs
[RedoOpt]EuroSys’20 and STMs [CX-PTM]EuroSys’20 , [OneFile]DSN’19

❖ stacks and queues

 outperform by far previous implementations (including specialized)

 queues (up to 2.3x): [OptLinkedQ, OptUnLinkedQ](SPAA’21) , [CX-PUC, CX-PTM, RedoOpt]EuroSys’20 ,
[OneFile]DSN’19 , [Capsules]SPPA’19 , [Friedman et al]PPoPP’18 , [Romulus](SPAA’18)

 stacks (up to 3.9x): DFCarXiv’20 , OneFileDSN’19 , RomulusLogSPAA’18 , PMDK

often guarantee stronger consistency properties

2

Our Algorithms
Faster than best

competitor

Blocking

Sync Prot. 3.9x

Wait-Free

Sync Prot. 2.4x

Stack 3.9x

Queue 2.3x

Stack 2.3x

Queue 1.6x

Our Contribution

3

Durable Linearizability

❖ all completed operations before the crash, are reflected in the object’s state

upon recovery
[Izraelevitz, Mendes and Scott. 2016]

? operation responses?

? re-execute operation upon recovery?

Detectability

❖ recovery code infers if the failed operation was linearized or not

❖ if it is linearized, obtains its response

[Friedman, Herlihy, Marathe and Petrank. 2018]

Recoverable Objects
Correctness

→ not always an acceptable option

❖ state-of-the-art synchronization technique

❖ goal: execute synchronization requests at low cost

 access the same data → must be executed in mutual exclusion

 ideally,

✓ zero synchronization cost

✓ time required to execute them sequentially

❖ announce requests

❖ combiner serves active requests from all other threads

❖ other threads

 (in a blocking setting) local spin until request is served

 (otherwise) pretend* to be the combiner, e.g., using local copy of the state
*(eventually, just one will indeed become the combiner)

4

Software Combining
Low synchronization cost

5

Recoverable Computing
Crucial for low persistence overhead

Persistence Principles

1. low number of persistence instructions

 store in NVMM only those variables (and

persist only those from their values) that are

necessary for recoverability

2. low-cost persistence instructions

 e.g., avoid persisting highly-contented

variables

3. persist consecutive data

 pwbs are applied on cache-line granularity

Design Decisions of

Combining Protocols

A. mechanism for

choosing combiner

B. data structure to store

the active requests

C. mechanism to apply

the updates

D. mechanism for

collecting responses

E. mechanism to discover

(not) applied requests

6

conventional lock-

based implementation

T1

T2

time

lock push(A) unlock

lock push(B) unlock

announce

announce lock push(A) push(B) unlock

combiner

T1
T2

A B

T1

T2

T1

T2

time

Software Combining

technique

Announce Array

push(A)

push(B)

Software Combining

7

T1

T2

time

lock push(A) unlock

lock push(B) unlock

persist A

persist B

conventional

recoverable lock-

based implementation

persist = usually two instructions

(pwb & psync)

T1

T2

time

announce

announce lock push(A) push(B) unlockpersist A & B

Software Combining

technique

Key Idea
Why is this a promising approach?

8

Benefits:

✓ reduced number of fence instructions

 combiner executes only one fence

✓ store multiple nodes into a single cache line

✓ allocate/persist consecutive memory addresses

✓ elimination is applicable

Software Combining →

Efficient Recoverable

Data Structures

T1

T2

time

announce

announce lock push(A) push(B) unlockpersist A & B

✓ efficient solution for highly

contended data structures

 e.g., stacks and queues

fundamental data structures

Key Idea
Why is this a promising approach?

reveal the power of Software Combining →

low-cost recoverability

9

PBcomb
highly efficient

blocking combining

PBstack

PBqueue PWFcomb*
highly efficient

wait-free combining

PWFstack

PWFqueue

PBheap

Our results

DRAM

10

A. Announce array

B. lock

 a thread that fails to
acquire the lock, waits at

most two combiners

Announce

T1 push(A)

T2 push(B)

T3 pop()

... ...

TN Push(C)

deactivate

request of T1 is active

request of T2 is active

request of T3 is served

...

request of TN is served

C. active request

 activate flipped upon request announce

 deactivate flipped after serving request

Deactivate

0

1

1

...

0

Activate

1

0

1

...

0

NVMM

Responses

ack

ack

C

...

ack

announced but

not applied

: activate bit ≠ deactivate bit

→ DRAM

→ DRAM

D. Responses → NVMM

 combiner stores responses

of served requests

 threads retrieve them

upon recovery a thread is

able to determine whether its

crashed request took effect

and if so, obtain its response

*[Friedman, Herlihy, Marathe, and Petrank. 2018]

satisfies detectability*

PBcomb
Design decisions

11

 copy the state of the data structure

 apply requests on this copy

 atomically update the state by switching
curState to index the copy → new valid state

T1

A

T2

B
A

B

curState
T1 T2

A B

A

B

g
e

n
e

ra
l
te

c
h

n
iq

u
e

o
p

ti
m

iz
a

ti
o

n

• the copy of the state is persisted before updating curState

• the updated value of curState is persisted before releasing the lock

top

curState

top

PBstack: persists only top and

the newly allocated nodes

copy only the
top variable of

the stack

 optimization: copy only the state of

the synchronization points of the data

structure

copy

c
o

p
y

-
P

B
st

a
c

k

PBcomb
Design decisions – Apply Requests

12

Benefits of copying:

✓ enables allocation and persistence of consecutive memory locations

 private copy

 enhancement: stores together with the state all other persistent metadata of PBcomb

 responses and deactivate bits

✓ allows atomic update of the simulated state with a single instruction

 crash-resistant: retains the data structure in consistent state

✓ fast recovery

 already supports durable linearizability → null-recovery

 to support detectability → a single check

to determine if a request has been

served and retrieve its response

the effects of all requests that

have completed before a crash,

are reflected in the state of the

data structure, upon recovery

*[Izraelevitz, Mendes, and Scott. 2016]

durable linearizability*

PBcomb
Design decisions – Copy of the state

13

Blocking Recoverable Software Combining

❖ PBqueue

 uses two instances of PBcomb

 the first coordinates accesses on head

 the second coordinates accesses on tail

 copies only the state of the synchronization
points (head and tail)of the queue

❖ PBheap

 state: heap elements and heap bounds

Wait-free Recoverable Software Combining

❖ PWFcomb

 extends ideas from PBcomb and Psim**

 several threads may concurrently attempt

to become the combiner → increased

persistence overhead

 additional techniques used to reduce

persistence overhead

❖ PWFstack: copies only top

❖ PWFqueue

 uses two instances of PWFcomb

 copies only head or tail

*Full Version:
https://doi.org/10.1145/3503221.3508426

https://arxiv.org/abs/2107.03492

**[Fatourou and
Kallimanis. 2011]

Additional results*
Key points

14

 a thread adds a randomly

produced workload

between consecutive
Fetch&Multiply ops

2-processor Intel Xeon Platinum
8260M (96 logical cores) with
1TB Intel Optane DC persistent

memory (DCPMM) in AppDirect mode

our protocols satisfy
detectability

competitors guarantee
only weaker consistency
(e.g. durable linearizability)

Recoverable Fetch&Multiply

PBcomb:3.9x

PWFcomb:2.4x

Performance Analysis
Testbed and Synthetic-Benchmark

15

Recoverable Queue

Recoverable Stack

 benchmarks perform pairs of
enqueues-dequeues & push-pops

Why our

implementations

perform so well?

low synchronization
& persistence cost

PBqueue:2.3x

PWFqueue:1.6x

PBstack:3.9x

PWFstack:2.3x

Performance Analysis
Fundamental Data Structures

16

 the first recoverable heap

implementation

 benchmark performs
equal number of Insert
and DeleteMin operations

Recoverable Heap

Performance Analysis
More Complex Data Structures – Heap

reveal the power of
Software Combining →

low-cost recoverability

17

PWFcomb*
highly efficient

wait-free combining

PWFstack

PWFqueue

PBcomb
highly efficient

blocking combining

PBstack

PBqueue

❖ persistence principles

 follow to achieve good performance

❖ many times faster than competitors

❖ we are detectably recoverable

 most competitors are only durably linearizable

PBheap

Conclusion

