Recoverable Software Combining®

Panagiota Fatourou
Université de Paris, LIPADE, F-75006
Paris, France
FORTH and University of Crete
Greece
faturu@csd.uoc.gr

1 INTRODUCTION

Byte-addressable Non-Volatile Main Memory (NVMM) is a reality,
with Intel Optane DC Persistent Memory being already in the mar-
ket. The availability of NVMM enables the design of concurrent
algorithms, whose execution will be recoverable at low cost. An
algorithm is recoverable if its state can be restored after recovery
from a system-crash failure. Despite many efforts for designing
efficient recoverable synchronization protocols and data structures,
persistence comes at a significant cost even for fundamental data
structures, such as stacks and queues. The main reason for this is
that data stored into registers and caches are volatile, and need to
be flushed to persistent memory for ensuring that they will not be
lost at a system crash.

Software combining is a state-of-the-art synchronization tech-
nique [5, 6] which works well when the number of synchronization
points in the underlying algorithm is small. In this paper, we reveal
the power of software combining in achieving recoverable syn-
chronization and designing recoverable data structures. In software
combining, each thread first announces its request, and then tries
to become the combiner by acquiring a lock. The combiner applies
several active requests, in addition to its own, before it releases the
lock. As long as the combiner serves active requests, other threads
perform local spinning, waiting for the combiner to release the lock.
As soon as the lock is released, waiting threads whose requests
have been served by the combiner, return the calculated responses,
whereas the rest compete again for the lock.

In this paper, we present two recoverable software combining
protocols, which have been designed carefully to respect a number
of principles we identify to be crucial for performance and they can
be summarized as follows: 1) Store in NVMM only those variables
that are absolutely necessary for recoverability to minimize the
number of expensive persistence instructions, such as flushes (pwbs)
and fences (psyncs) that are executed; 2) As not all all persistence
instructions have the same cost [1], design the protocol so that the
persistence instructions it executes are of low cost. One way to
achieve this is to avoid the execution of such instructions on highly-
contended shared variables; and 3) place the data to be persisted
in consecutive memory addresses and persist them all together.
Our experiments show that the resulting protocols are many times

“These results have been accepted in ACM PPoPP 2022 [7].

1LSupported by the EU Horizon 2020, Marie Sklodowska-Curie project with GA No
101031688

*This research is co-financed by Greece and the European Union (European Social
Fund- ESF) through the Operational Programme «Human Resources Development,
Education and Lifelong Learning» in the context of the project “Reinforcement of
Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Schol-
arships Foundation (IKY)

Nikolaos D. Kallimanis
Institute of Computer Science,
Foundation for Research &
Technology - Hellas (FORTH)
Greece
nkallima@ics.forth.gr

Eleftherios Kosmas¥
Department of Computer Science,
University of Crete
Greece
ekosmas@csd.uoc.gr

faster than a large collection of existing recoverable techniques for
achieving scalable synchronization.

State-of-the-art combining protocols [6] do not necessarily sup-
port persistence in an efficient way, as they often store the active
requests in scattered memory locations (and in particular, in a dy-
namic singly-linked list). The combiner traverses these locations
to discover the currently active requests and applies them on the
shared state of the object, recording their responses in the nodes
of the list. As in such a protocol, the data are scattered in memory,
some of the persistence principles mentioned above are violated,
leading to high persistence overhead. Our synchronization proto-
cols have been designed to respect all persistence principles. We
build recoverable queues and stacks using our protocols. Exper-
iments show that the proposed implementations outperform by
far, many existing synchronization techniques [3, 4, 10], as well as
recoverable data structures based on such techniques and special-
ized recoverable implementations of them [8, 11, 12]. Concurrent
queues and stacks play a significant role in runtime systems, high
performance computing, kernel schedulers, network interfaces, etc.
The proliferation of NVMM and the availability of highly-efficient
recoverable stacks and queues could enable persistence in such
settings. Our implementations satisfy detectable recoverability [8],
whereas most competitors guarantee only weaker consistency prop-
erties [9].

Our contributions can be summarized as follows: 1) We present
two highly-efficient recoverable combining protocols (called PB-
comB and PWFcoMmB), which ensure low persistence overhead than
previous algorithms; 2) The protocols perform much better than
state-of-the-art existing synchronization techniques; 3) We pro-
vide a list of persistence principles that are crucial for performance
and provide experiments to illustrate the performance power of
respecting these principles when designing synchronization proto-
cols; 4) We provide recoverable queues (PBQUEUE and PWFQUEUE)
and stacks (PBstack and PWFsTAck), based on the new protocols,
which are much more efficient than previous recoverable imple-
mentations of such data structures.

2 OUR PROTOCOLS

PBcomB implements the lock in volatile memory using an imple-
mentation which has low synchronization cost. Additionally, a
thread may leave the entry-section without ever acquiring the lock,
if it finds out that its request has been served by a combiner. Also,
PBcowms utilizes an array, Request, to ensure that active requests
are stored in consecutive memory addresses. This array is stored

@

—— PBcomb —— PBqueue

@

A —+— PBstack |

— —7— NormOpt -
9 - —<— PWFcomb | 7 L —%— PwFqueue FHMP e i 7 | —%— PwFstack /*’ i
—— RedoOpt pd —¥— RedoOpt —%— RomulusLR ,/ —#— OneFile
8r Redo A 1 oL RedoTimed RomulusLog A | oL PMDK T |
5 | —m— OneFile] —m— Onefile OptLinkedQ _ DFC A
X-PTM CX-PTM OptUniinkedq —#— RomulusLog -
g 6l i gsr CX-PUC 1 gsr 1
F . Fa i A S
Z 2 2 ~
g sl] Sal 1 g4]
< - < <
2]]
Y ,)//X 1 B3l 4 E3 J
3 J
. S—— ¥ 2
2 kK E
1 B 1
f —a——a__n - = i
0 : : : 0 0
48 60 72 84 9% 24 36 48 60 72 84 9% 1 12 24 36 48 60 72 84 96
threads # threads # threads
(a) (b) (©

Figure 1: Throughput of recoverable: (a) AtomicFloat objects, (b) queue implementations, and (c) stack implementations.

in volatile memory, resulting in lower persistence cost. Each com-
biner creates a copy of the state of the implemented object and
applies the active requests on this private copy. This is a crucial
design decision of PBcoms in terms of performance. The combiner
switches a shared variable to index its copy, indicating that it stores
the current valid state of the implemented object. The combiner
should persist its private copy before trying to switch the pointer.
When a combiner performs updates directly on the shared state
of the implemented object the updates are performed on data that
are usually scattered in memory, thus resulting in high persistence
cost when persisting the updated values. This problem is avoided
by the technique of creating a copy of the state to apply the up-
dates on, followed by PBcoms. This technique allows to persist
data stored in the copy in consecutive memory addresses but it
works well mainly for objects of small or medium size (or when
the number of synchronization points is small), as otherwise the
cost of copying and persisting the state may dominate the cost of
persisting a smaller amount of scattered data (part of the state).
To be compatible with the persistence principles listed above,
PBcoms stores the response values in an array, which is maintained
together with the state of the object (in consecutive memory ad-
dresses). The combiner persists the entire array of return values
together with the object’s state. PBcomB uses two bits (activate and
deactivate) for each thread p, to identify whether the last request,
initiated by p, has been served. If the two bits are not equal, p has a
request which has not yet been served i.e., it is active. PBcomB per-
sists just the deactivate bit of p. Following persistence principle 3,
PBcoms stores the deactivate bits together with the object’s state,
so all data to be persisted are in consecutive memory locations.
Details for the other implementations are provided in [7].

3 EVALUATION

We evaluate our algorithms on a 48-core machine (96 logical cores)
consisting of 2 Intel Xeon Platinum 8260M processors with 24 cores
each, equipped with a 1TB Intel Optane DC persistent memory
(DCPMM). Each run simulates 107 atomic operations in total, with
each of the n threads simulating 107 /n operations.

We first consider a synthetic benchmark (AtomicFloat) in which
every thread, repeatedly, executes AtomicFloat(O, k) that reads
the value v of O and updates it to v * k. In Figure 1a, we compare
the performance of AtomicFloat implementations based on PB-
coMmB and PWFcoMmB against state-of-the-art wait-free recoverable
synchronization techniques: ONEFILE [10], CX-PTM [4], and Re-
DOOPT [4]. Figure 1a shows that our first protocol, PBcoms, is
more than 4x faster than REDOOPT, which is the fastest among the

competitors. Also, our second protocol, PWFcoMs is more than
2.8x faster than REDOOPT. Figure 1b compares the performance of
PBoUEUE and PWFQUEUE with recoverable queue implementations
based on the persistence techniques studied in Figure 1a and CX-
PUC [4], the specialized recoverable queue implementations in [8]
(FHMP) and in [12] (OpTLINKEDQ and OPTUNLINKEDQ), an imple-
mentation based on CAPSULES-NORMAL [2] (NorMOPT), and the
recoverable queue implementations based on Romurus [3] (i.e., Ro-
mulusLR and RomulusLog). Figure 1b shows that PBQUEUE achieves
superior performance by being 2x faster than the OpTUNLINKEDQ,
which is the best competitor. Finally, Figure 1c illustrates that the
performance of PBstack and PWFstack is much better than the
following algorithms: the recoverable stack implementations based
on ONEFILE [10] and RomuLus [3], and a recoverable stack based
on flat-combining (DFC) [11], which is the best competitor.

REFERENCES

[1] H. Attiya, O. Ben-Baruch, P. Fatourou, D. Hendler, and E. Kosmas. Detectable
recovery of lock-free data structures. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, to
appear.

N. Ben-David, G. E. Blelloch, M. Friedman, and Y. Wei. Delay-free concurrency
on faulty persistent memory. In The 31st ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 19, pages 253-264.

A. Correia, P. Felber, and P. Ramalhete. Romulus: Efficient algorithms for persis-
tent transactional memory. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, SPAA *18, pages 271-282.

A. Correia, P. Felber, and P. Ramalhete. Persistent memory and the rise of
universal constructions. In Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA, 2020.

P. Fatourou and N. D. Kallimanis. A highly-efficient wait-free universal construc-
tion. In Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 11, pages 325-334.

P. Fatourou and N. D. Kallimanis. Revisiting the combining synchronization
technique. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’12, pages 257-626.

P. Fatourou, N. D. Kallimanis, and E. Kosmas. The performance power of software
combining in persistence. In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 22, to appear.

M. Friedman, M. Herlihy, V. Marathe, and E. Petrank. A persistent lock-free
queue for non-volatile memory. ACM SIGPLAN Notices, 53(1):28-40, 2018.

J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent memory
objects under a full-system-crash failure model. In Proceedings of the 30th Inter-
national Symposium of Distributed Computing, volume LNCS 9888 of DISC 16,
pages 313-327.

P. Ramalhete, A. Correia, P. Felber, and N. Cohen. Onefile: A wait-free persistent
transactional memory. In 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 151-163. IEEE, 2019.

M. Rusanovsky, O. Ben-Baruch, D. Hendler, and P. Ramalhete. A flat-combining-
based persistent stack for non-volatile memory. CoRR, abs/2012.12868, 2020
(version submited at 23 December, 2020).

G. Sela and E. Petrank. Durable queues: The second amendment. In Proceedings
of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures, pages
385-397.

(1]

(12]

	1 Introduction
	2 Our Protocols
	3 Evaluation
	References

