A Write-Friendly NVM Scheme for Security
Metadata with High Availability

Jianming Huang and Yu Hua
School of Computer, Huazhong University of Science and Technology
Email: {jmhuang, csyhua}@hust.edu.cn

I. INTRODUCTION

Non-Volatile Memory (NVM) is becoming the main devices
of next-generation memory systems, due to high density,
near-zero standby power, non-volatile and byte-addressable
features. However, due to the non-volatile property, NVM
has to handle severe security vulnerabilities. After physically
stealing DIMM, an attacker can easily read the contents via
another computer due to retaining data after power off in
NVM. To protect the user data from attacks, an intuitive
solution is to leverage data encryption and integrity verification
schemes, which unfortunately introduce extra security meta-
data, respectively including counter blocks and integrity tree
nodes. To support the execution of applications after crashes, it
is important to efficiently recover these metadata to consistent
states.

To ensure data security in NVM, existing security mecha-
nisms, i.e., counter mode encryption (CME) [2] and integrity
tree verification [5], are leveraged in the memory controller.
CME uses a counter in counter blocks, a data line address and
a global secret key to generate a one-time padding (OTP) via
the AES algorithm. For memory writes, the data line needs
to be encrypted by XORing the plaintext data and OTP. For
memory reads, OTP is generated via the cached counter block
in parallel with reading a memory line, and the plaintext data
are obtained by XORing the memory line and OTP. Thus
the decryption latency is hidden by the latency of reading
data. SGX-style integrity tree (SIT) is widely used in the
integrity verification scheme. An SIT node contains eight 56-
bit counters and one 64-bit MAC space [5]. The MAC in
each SIT node is generated by hashing the node address, the
counters in this node and one corresponding counter in the
parent node. SIT calculates the MACs in different nodes in
parallel once these counters have increased. In the SIT-based
systems, the counter blocks in CME are the leaves of SIT, and
the counter blocks have the same structures as SIT nodes, i.e.,
eight counters and one MAC.

In DRAM, the data are lost upon system crashes. Unlike
DRAM, NVM maintains data after system crashes and pro-
vides the ability to recover the system. However, the security
metadata, i.e., SIT nodes and counter blocks, in the metadata
cache in the memory controller are lost. To continue protecting
the data in NVM, the security metadata also need to be
recovered during system recovery. Reconstructing one SIT

node needs its parent node as inputs. Unfortunately, the parent
node in cache may lose upon system crashes. Therefore, the
SIT cannot be reconstructed after system recovery. Moreover,
for high-availability systems that need to meet the availability
target of 99.999% (five nines rule), such as bank systems and
online transactions, a short recovery time is necessary.

In SIT, when persisting data, the parent node of the
persisted data is modified. To recover SIT after system crashes,
Anubis [5] stores the modifications of security metadata
in a shadow table (ST) block and persists the ST block.
Therefore, after system crashes, the stale metadata in NVM
are restored from the ST blocks. However, Anubis incurs 2x
memory writes, i.e., for normal writes and ST block writes,
which significantly reduces the system performance and NVM
lifetime, and increases the energy overheads.

To achieve a short recovery time after system crashes and
low write overhead on running time, we propose STAR to
instantly persist modifications of metadata and fast recover the
stale metadata on recovery. The insight behind STAR is that
the modifications in metadata cache are caused by persisting
one data. To avoid two writes respectively for the data and
modification, we coalesce them into one write maintained in
the data to be persisted.

. II. STAR DESIGN
A. Observation

SIT uses MACs stored in tree nodes to associate one tree
node with its parent node. The user data also need MACs to
associate the data with encryption counters by hashing the data
contents, data address and corresponding counter in counter
block to generate the MAC. To avoid the failure of integrity
checking after recovery, MACs are written into NVM with the
user data [4].

In general, the size of MAC space is 64 bits, and 56-bit
MAC is stored in the MAC space [5]. In fact, 54-bit MAC
is enough to guarantee security [3]. There are 10 unused bits
in a 64-bit MAC space. We will reuse these unused bits in
our design to instantly persist the modifications of security
metadata.

B. Persisting the Modifications of Metadata

In SIT, when one data block is evicted from cache into
NVM, its parent nodes are modified. Specifically, the corre-
sponding counter in its parent node increases by one, and the
MAC in the parent node is hence modified. Other counters

[_JUnchanged [Modified

[ColCiICo[- 1Cz2[MAC] [ColCalCol = {Cz[MAC]

[ColC1IC2I -+ 1 C,[MAC]

[Col C1IC2l =+ {C,[MAC]
1st line write- -{—data — [MAC]
[CoIMACT |

2nd line write- - m——one line write

_________________ ' 10 LSBs of C2

(a) Intuitive scheme (b) STAR scheme

Fig. 1. Persisting the modifications of dirty nodes. (a) The intuitive scheme
persists two lines with atomicity assurance; (b) STAR scheme persists one
line via counter-MAC synergization.

in the parent node and other nodes are unchanged as shown
in Fig. 1. The systems need to persist the modifications. On
recovery, after obtaining the modified counters of the stale
nodes, we restore the node by combining the modifications
and the stale version in NVM. Finally, the MAC of the stale
node is recomputed.

To persist modifications of the parent node, one intuitive
scheme is to store the modified counter and MAC in one line,
and persist the line with data block in an atomic operation, as
shown in Fig. 1(a). However, the intuitive scheme incurs 2x
memory writes.

Unlike the intuitive scheme, we store the modifications
of metadata in their child nodes’” MAC space, as shown in
Fig. 1(b). STAR leverages the unused bits of MAC in the
child node to store 10 LSBs of the corresponding counter
in the parent node. When one data to be written arrives at
the memory controller, only the corresponding counter in the
parent node increases by one. STAR stores 10 LSBs of the
increased counter in the unused space of the data’s MAC,
called counter-MAC synergization. In data, the MAC and
contents are organized in one line [4]. Hence the modifications
of the parent node are atomically persisted with the data
without any atomicity assurance.

To protect the LSBs, MAC in a data block is computed by
hashing the contents in the block, the address of the block, the
corresponding counter in the parent node and the LSBs stored
in the MAC space. When a counter in one metadata has been
increased 2'9 times, the metadata needs to be flushed into
NVM to update the Most Significant Bits (MSBs), which are
used on recovery to restore the stale metadata. This counter
overflow is rare and introduces negligible overhead.

After system crashes, the counter blocks are restored from
the corresponding user data which are the child nodes of
counter blocks, and the SIT nodes are restored from their child
nodes. For one stale metadata, STAR obtains the correct LSBs
of counters from its child nodes’ MAC space. Combining
the MSBs stored in NVM with the LSBs obtained from the
child node’s MAC, counters in the stale metadata are restored.
According to the corresponding counter in the parent node (if
necessary, the parent node also needs to be restored), the MAC
in this stale metadata is recomputed. By using the counters and
MAC:Ss, the stale metadata are recovered.

III. EXPERIMENTAL RESULTS

To evaluate the performance of STAR, we use GemS with
NVMain to model the system and compare our STAR with a

WB ZZ STAR [Anubis B8 Strict Persistence

Normalized Write Traffic
O P N W H U O N © ©
1

Fig. 2. The write traffic of different schemes (normalized to WB).

persistent system using a write-back metadata cache (WB), a
strict persistence scheme (Strict Persistence) and Anubis for
SGX-style Integrity Tree scheme (Anubis).

Fig. 2 shows the write traffic of different schemes. In
addition to persisting common memory writes (i.e., the writes
in WB), Anubis also persists the ST blocks, and the strict
persistence persists all nodes in a branch of SIT when a user
data is written. Since the height of SIT is 8 in our configuration
(excepting the root), the write traffic (including persisting the
user data) of a strict persistence scheme is about 8 times
higher than that of WB. As shown in Fig. 2, compared with
the baseline WB scheme, the write traffic of STAR is 1.08x,
while Anubis has 2x write traffic than WB. STAR significantly
reduces 92% extra memory traffic compared with Anubis.

In the full-length paper [1] we describe STAR in more
detail: threat model; fast recovery; security analysis; the IPC
performance and energy consumption of STAR.

IV. CONCLUSION

To ensure the data security in NVM, the security metadata
need to be recovered, which requires elaborate design for
memory writes during running time. In this paper, we propose
STAR, which stores the modifications of security metadata in
the MAC space of persisted data. Therefore, STAR atomically
persists the modifications and data without extra memory
writes. To efficiently recover the SIT and verify the recovery
process, STAR leverages bitmap lines to maintain the locations
of stale metadata. A cache-tree is constructed to ensure the
correctness of the recovery process.

REFERENCES

[1] J. Huang and Y. Hua, “A write-friendly and fast-recovery scheme
for security metadata in non-volatile memories,” in The 27th IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021. [Online]. Available: https://doi.org/10.1109/HPCAS51647.
2021.00038

[2] H.Lipmaa, P. Rogaway, and D. Wagner, “Ctr-mode encryption, comments
to nist concerning aes modes of operations,” in NIST Workshop on Modes
of Operation, 2000.

[3] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and
M. Qureshi, “Morphable counters: Enabling compact integrity trees for
low-overhead secure memories,” in 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2018.

[4] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-correcting
memories,” in [EEE International Symposium on High Performance
Computer Architecture (HPCA). 1EEE, 2018.

[5] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead and recovery
time for secure non-volatile memories,” in Proceedings of the 46th
International Symposium on Computer Architecture. ACM, 2019.

