
Scaling Learned Indexes on Persistent Memory ∗

Baotong Lu1, Jialin Ding2, Eric Lo1, Umar Farooq Minhas3, Tianzheng Wang4
1The Chinese University of Hong Kong, 2MIT, 3Microsoft Research, 4Simon Fraser University
1{btlu, ericlo}@cse.cuhk.edu.hk, 2jialind@mit.edu, 3ufminhas@gmail.com, 4tzwang@sfu.ca

1 MOTIVATION
Byte-addressable persistent memory (PM) such as Intel Optane
DCPMM promises persistence, low cost, high capacity and low
latency on the memory bus. This opens up new possibilities for
indexes that operate and persist data directly on PM, with desirable
features like instant recovery while maintaining high performance.
Recent learned indexes [4] exploit data distribution and have shown
great performance for some workloads. The main intuition behind
learned indexes is that if keys are continuous integers (e.g., 0-100
million), the value mapped by key 𝑘 can be accessed by 𝑎𝑟𝑟𝑎𝑦 [𝑘].
Such model-based search gives𝑂(1) complexity and the entire index
is as simple as a linear function. Of course, the data distribution
of real world data could be much more complex so that current
learned indexes [2, 4] typically use a hierarchy of models that form
a tree-like structure to improve accuracy.

We observe learned indexing is a natural t for PM: Real PM
(Optane DCPMM) exhibits ∼4× higher latency and ∼3–14× lower
bandwidth than DRAM [10], whereas model-based search is espe-
cially good at reducing memory accesses. However, learned indexes
were designed based on DRAM without considering PM properties,
and existing PM-based indexes [8, 9] typically evolve B+-trees or
hash tables which are agnostic to data distribution. Therefore, it
remains challenging for learned indexes to work well on PM.

Challenge 1: Scalability and Throughput. Although learned
indexes are frugal in bandwidth usage for lookups, they still ex-
hibit excessive PM accesses for inserts. This is because learned
indexes [2, 4] require key-value records be maintained in sorted
order, which may cause existing records to be shifted during inserts.
Since PM exhibits asymmetric read/write bandwidth with writes
being 3–4× lower, frequent record shifting can easily exhaust write
bandwidth and eventually limit insert scalability and throughput. A
common solution is to use unsorted nodes [9] that accept inserts in
an append-only manner at the cost of linear search. This is reason-
able for small B+-tree nodes (e.g., 256B–1KB), but for model-based
operations to work well, it is critical to use large nodes (e.g., up
to 16MB in ALEX [2]) with sorted data. This in turn makes struc-
tural modication operations (SMOs), such as node splits, more
expensive with more PM accesses and higher synchronization cost:
typically only one thread can work on a node during an SMO.

Challenge 2: Persistence and Crash Consistency. A key
feature of persistent indexes is to ensure correct recovery across
restarts and power cycles. Simply running a learned index on PM
does not guarantee consistency. Any operations that involvewriting
more than eight bytes could result in inconsistencies as currently
only 8-byte writes on PM are atomic. Although recent work [3, 5]
provides easy ways to convert DRAM indexes to work on PM with
crash consistency, they are either not general-purpose, or incur
very high overhead due to heavyweight logging internally.

∗ Orignally published in VLDB 2022 [7]: hps://vldb.org/pvldb/vol15/p597-lu.pdf.

𝑝𝑜𝑠 = 𝑘×4

𝑘 ∈ [0,1)

𝑝𝑜𝑠 = (𝑘 − !
")×16

Root node

𝑘 ∈ [
1
4
,
1
2
)

Inner node C
𝑝𝑜𝑠 = 50𝑘 − 25

Data node B
𝑘 ∈ [

1
2
, 1)

𝑝𝑜𝑠 = 40𝑘 + 0.3
Data node A

𝑘 ∈ [0,
1
4
) key

1

0.5

0
0 ⁄1 4 ⁄1 2 ⁄3 4 1

CD
F

Figure 1: Overall architecture of ALEX [2], a representative
updatable learned index which APEX is based upon.

2 APEX
We present APEX, a persistent learned index that retains the bene-
ts of learned indexes while supporting scalable concurrency and
instant recovery on PM. We design APEX with a set of principles
distilled from the unique properties of PM and learned indexes:
• P1 - Avoid Excessive PMReads andWrites.A practical PM in-

dex must scale well on multicore machines. Given the limited and
asymmetric bandwidth of PM, APEX must reduce unnecessary
PM accesses and avoid write amplication.

• P2 - Model-based Operations. Data-awareness and model-
based operations uniquely make search operations ecient. A
persistent learned index such as APEX must retain this benet.

• P3 - Lightweight SMOs. SMOs in learned indexes can be heavy-
weight and eventually limit scalability. APEX should be designed
to reduce such overheads.

• P4 - Judicious Use of DRAM. APEX can use DRAM for perfor-
mance, but should use it frugally to reduce cost.

• P5 - Crash Consistency. APEX operations must be carefully de-
signed to guarantee crash consistency with low overhead. Ideally,
it should support instant recovery to achieve high availability.
APEX is based on ALEX [2], a state-of-the-art updatable learned

index. APEX inherits ALEX’s architecture (Figure 1) to consist of
inner nodes and data nodes. Each inner node uses a linear regression
model to predict the next child node (model) to probe, until reaching
a data node. A data node stores key-value records and supports
“last-mile” search to account for any inaccuracies of the model.
APEX is open-source at: hps://github.com/baotonglu/apex.

2.1 Design Highlights
APEX places all node contents in PM except a small amount of meta-
data and accelerators in DRAM to improve performance and reduce
PM writes (P1, P4). A key observation is that each data node can be
treated as a hash table which uses a model as an order-preserving
hash function to predict insert locations (model-based insert). To
resolve collisions without introducing excessive PM accesses, we
propose a new probe-and-stash mechanism inspired by recent PM
hash tables [8] (P1, P2). We set dierent maximum node sizes for
APEX’s inner and data nodes to avoid SMOs hindering scalability

https://vldb.org/pvldb/vol15/p597-lu.pdf
https://github.com/baotonglu/apex

Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang

a, bModel:

…

Primary array Stash array

…

64B; one per 256 records

16-bit 16B
Bitmap 16 FPs48-bitMetadataLock Lock …

Accelerator shared by PA[0-15]

15 Fingerprints + pointers
Overflow bucket (128B):Stash bitmap

K
P

K
P

…
K
P

K
P

K
P

… …
K
P

K
P

K
P

K
P

K
P

Bitmap …

…
K
P

K
P

Pointers PM

K
P

DRAM

(b) PM-resident data node
(c) PM-resident
extended stash

…

(a) DRAM structure

Figure 2: APEX data node layout and DRAM-resident data.

while maintaining a shallow tree (P3). For instant recovery, we
design a log-free approach to updates with low overhead and make
DRAM-resident components reconstructable on-demand (P5).

PM-optimized nodes with data awareness. Each inner node
stores a linear model and an array of child pointers. In Figure 2, each
data node consists of (1) a primary array and a stash array (and in
case of overows, extended stash blocks), which store records and
are PM-resident, and (2) reconstructable metadata stored in DRAM
to accelerate various operations. We devise a probe-and-stash mech-
anism to avoid excessive PM accesses in data nodes. Starting from
the linear model’s predicted position in the primary array (PA),
an insert operation linearly probes PA for a free slot. We bound
the probing distance to 16, making records in PA nearly-sorted to
improve (range) search performance. If no free slot is found, APEX
inserts the new record to the stash array (SA). Stashing allows
APEX to eciently resolve collisions without excessive PM writes
compared to ALEX’s element-shift or other common techniques
(e.g., chaining). We also use accelerators including ngerprints [9]
to reduce the overhead of stash accesses (details in full paper [7]).
Each data node has a xed number of record slots, so APEX needs to
properly divide the slots between PA and SA. Allocating more slots
to PA can eciently facilitate model-based operations, yet there
must be enough stash slots in case collisions do happen. The better
the model ts the underlying data, the less frequently collisions
happen and thus the smaller size of SA we should allocate. APEX
strikes a balance between performance and collision handling, by
simulating the model’s accuracy using existing data to properly sets
the SA size upon node creation, making node structure data-aware.

Low-overhead data consistencywith instant recovery.APEX
makes index operations log-free, leveraging the fact that the integer
key can be atomically updated and indicate the record’s validity.
Specically, we indicate free slots by storing in them an invalid key
that is out of the node’s key range; upon recovery slots with invalid
keys are safely ignored. Because of the low tree depth, inner nodes
well uses CPU caches. Placing them in DRAM does not benet
much. Dierent from other PM-DRAM trees [1, 6, 9], this motivates
us to place inner nodes in PM to easily enable instant recovery.
APEX adopts lazy recovery [8], which serves the query requests
instantly upon system restart and reconstructs the DRAM-resident
metadata in data nodes on demand by the accessing threads.

Scalable concurrency. APEX adapts optimistic locking [8] for
learned indexes on PM with many careful designs (e.g., every 256
records share a lock), to balance the programmability and perfor-
mance. Data nodes in APEX are variable-sized, but have amaximum
size which is set to 256KB to fully exploit model-based operations.

 0
 20
 40
 60
 80

 1 8 16 24 32 48

M
ill
io
n
op

s/
s

Number of threads
 (a) Search.

APEX LB+-Tree uTree FPTree

 0
 5

 10
 15
 20

 1 8 16 24 32 48
Number of threads

 (b) Insert.

Figure 3: Throughput with a varying number of threads.

This is larger than typical B+-tree node sizes (e.g., 256B), but small
enough to eciently implement SMOs and achieve good scalability.
Since SMOs in inner nodes are relatively rare, we keep their maxi-
mum size to be 16MB, giving APEX more exibility to select node
fanout, lower tree depth and maintain good search performance.

3 EVALUATION
We conducted experiments on a server with a 24-core Xeon 6242R
CPU, 768GB of DCPMM (6 DIMMs on all six channels) in AppDirect
mode. We use six realistic and synthetic data sets in our workloads
but only show the results on one dataset (Longitudes) for brevity.
As shown in Figure 3, APEX scales well for lookups thanks to its
lightweight concurrency control andmodel-based operations, being
up to 3.9× faster than the state-of-the-art LB+-Tree [6]. Although
no indexes scales linearly under inserts (which inherently exhibit
many random PM writes), APEX is the most scalable solution.

4 CONTRIBUTION AND CONCLUSION
We make three contributions. First, APEX brings persistence to
learned indexes which is a missing but a necessary feature, bringing
learned indexing another step closer to practical adoption. Second,
APEX combines the best of PM and machine learning (high per-
formance with a small storage footprint). Third, we adapt a set of
techniques to implement learned indexes on real PM. APEX is based
on ALEX, but our techniques (e.g., probe-and-stash) are general-
purpose and applicable to other indexes. Evaluation results showed
that APEX outperforms state-of-the-art by up to 3.9×.
Acknowledgements.This work is partially supported by Hong
Kong General Research Fund (14200817), Hong Kong AoE/P-404/18,
Innovation and Technology Fund (ITS/310/18, ITP/047/19LP) and
Centre for Perceptual and Interactive Intelligence (CPII) Limited
under the Innovation and Technology Fund.

REFERENCES
[1] Youmin Chen et al. 2020. uTree: a Persistent B+-Tree with Low Tail Latency.

PVLDB 13, 11 (2020), 2634–2648.
[2] Jialin Ding et al. 2020. ALEX: An Updatable Adaptive Learned Index. In SIGMOD.
[3] Intel. 2018. PMDK. (2018). hp://pmem.io/pmdk/libpmem/.
[4] Tim Kraska et al. 2018. The Case for Learned Index Structures. In SIGMOD.
[5] Se Kwon Lee et al. 2019. RECIPE: Converting Concurrent DRAM Indexes to

Persistent-Memory Indexes. In SOSP.
[6] Jihang Liu et al. 2020. LB+-Trees: Optimizing Persistent Index Performance on

3DXPoint Memory. Proc. VLDB Endow. 13, 7 (2020), 1078–1090.
[7] Baotong Lu et al. 2021. APEX: A High-Performance Learned Index on Persistent

Memory. Proc. VLDB Endow. 15, 3 (2021), 597–610.
[8] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable

Hashing on Persistent Memory. Proc. VLDB Endow. 13, 8 (2020), 1147–1161.
[9] Ismail Oukid et al. 2016. FPTree: AHybrid SCM-DRAMPersistent and Concurrent

B-Tree for Storage Class Memory. In SIGMOD.
[10] Jian Yang et al. 2020. An Empirical Guide to the Behavior and Use of Scalable

Persistent Memory. In FAST. 169–182.

http://pmem.io/pmdk/libpmem/

	1 Motivation
	2 APEX
	2.1 Design Highlights

	3 Evaluation
	4 Contribution and Conclusion
	References

