
Deep Learning based Prefetching for Flash
Chandranil Chakraborttii

Trinity College
nil.chakraborttii@trincoll.edu

Heiner Litz
University of California Santa Cruz

hlitz@ucsc.edu

ABSTRACT
Prefetching in solid-state drives (SSDs) is a process of pre-
dicting future block accesses and loading them into the
main memory ahead of time. In this paper, we describe the
challenges of prefetching in SSDs, elaborate why prior ap-
proaches fail to achieve high accuracy, and present a deep
neural network (DNN) based prefetching technique that sig-
nificantly outperforms the state-of the-art. We address the
challenges of prefetching in very large sparse address ranges,
as well as prefetching in a timely manner by predicting ahead
of time. We show our proposed technique outperforms prior
prefetching approaches based on Markov chains by up to
8× and the existing stride prefetchers by up to 800× and on
real-world applications running on cloud servers.

1 INTRODUCTION
Real-world applications not only perform sequential accesses,
but also follow complex workload patterns [1]. Applications
are frequently used simultaneously by multiple users per-
forming independent tasks, resulting in a mix of sequential
and random IO requests. Learning SSD storage access pat-
terns for prefetching is a challenging task for the following
reasons. As SSDs are increasing in their storage capacity to
16TB and beyond, drives are now supporting billions of LBAs.
Since prefetching is successful only if every bit of the logical
block address is predicted accurately, models are required to
predict which logical block address (LBA) to prefetch with
perfect accuracy within a large LBA space. This space is often
sparse, as the operating system allocates blocks within the
filesystem layer, and hence, even sequential data within the
files may be mapped to arbitrary LBAs within SSD. Further-
more, as prefetching needs to be timely, simply predicting
the next LBA and the requested IO size is not sufficient, and
it is required to predict multiple accesses into the future.
Existing prefetching mechanisms [2, 5] are limited by

the computational complexity and difficulty of correctly
predicting future IO accesses. For instance, the read-ahead

I/O Size

LBA delta

I/O Size

LBA delta Embedding

Embedding

LSTM
N=500

LSTM
N=500

Softmax

Softmax
Concate

nate

Output layersInputs

D
ro

p
o

u
t

Figure 1: Model Architecture

prefetcher [2] is limited to prefetching the next data item
within a file to accelerate sequential accesses. More advanced
prefetchers that can learn complex IO access patterns have
been dismissed because of their computational costs. Modern
SSDs and operating systems offer a wide range of telemetry
data for analysis. Utilizing the IO access tracing in hardware
and software enables collection of large, clean, and automat-
ically labeled datasets that can fuel powerful machine learn-
ing models. In this work, we utilize sequence-to-sequence
neural networks to learn spatial IO access patterns of appli-
cations from block level IO traces collected from a diverse
set of data center applications. Specifically, we leverage Long
Short-TermMemory (LSTM) [3] and make the following con-
tributions. First, our model provides high accuracy even in
the presence of complex interleaved IO streams. Second, we
address the challenge of timeliness by predicting multiple
IO accesses ahead of time.

2 METHODOLOGY
Weused a total of 10 block-level IO traces for our experiments
from three sources running applications in live production
servers [1, 6]. We preprocess the input traces to address the
problem of large LBA range. The number of unique memory
addresses within an SSD is typically of the order of billions,
rendering a separate class for each memory address impracti-
cal. To reduce the address space, we take the 𝑙1 norm of each
pair of consecutive LBAs (LBA delta). For example, if consec-
utive IO accesses starting from LBA 100 are requested as 101,
103 and 106, the corresponding LBA deltas were recorded
as 1, 2, and 3, respectively. This significantly reduces the
number of classes that our model has to predict. We identify
the top 1000 frequently occurring LBA deltas and assign each
one of them to a class in decreasing order of their frequen-
cies. The remaining LBA deltas are assigned to a separate
class representing a “no prefetch" operation, thus limiting
the number of classes for a model to predict to 1001.

Trace Data 
(Timestamp, 
IOSize, Offset 

Our Approach 
Trained Model) 

Trace 
replay 

Baselines 
(Stride Prefetcher/ 
TopLBA/ Random 

Prefetch Cache 
(Size = N) 

Predict IOSize 
and LBA 

Predicted LBA in 
Prefetch cache? 

Yes 

No 

hit 

miss 

Figure 2: Block diagram of the proposed simulator



, , Chandranil Chakraborttii and Heiner Litz

Table 1: Comparison with baseline prefetchers

Dataset
Name No. Samples Naive

Prefetcher
Stride

Prefetcher
Markov

Prefetcher
Our

(Accuracy)
Our

(Precision)
Our

(Recall)
VDI_1 5226120 0.17 0.01 0.09 0.73 0.76 0.71
VDI_2 4443487 0.21 0.01 0.07 0.59 0.75 0.49
VDI_3 2902328 0.19 0.02 0.12 0.66 0.73 0.57
VDI_4 2408227 0.21 0.05 0.09 0.73 0.77 0.69
MSR_1 2244642 0.14 0.01 0.21 0.41 0.66 0.31
MSR_2 1211034 0.09 0.21 0.17 0.49 0.65 0.33
MSR_3 45746222 0.12 0.001 0.16 0.79 0.89 0.46
MSR_4 45283980 0.33 0.007 0.15 0.53 0.66 0.38
MS_1 1600430 0.27 0.02 0.25 0.63 0.79 0.53
MS_2 1714151 0.41 0.003 0.07 0.77 0.83 0.61

The requested IO sizes for the chosen applications ranged
from 4KB to several MBs with up to 10,000 different IO sizes
for an individual application. In order to reduce the number
of possible target IO size values, we round off each observed
IO size to the nearest number that is a power of 2, i.e. 2𝑛 ,
and use 𝑛 as an IO size class. This reduces the number of
possible target IO sizes for most applications to 16 while still
supporting requests of up to 64MB size. A limitation of this
approach is that, in the worst case, roughly twice as many
as required 4KB blocks may be prefetched from the SSD. We
designed our DNN model to concurrently predict both LBA
delta and IO size during inference. The model architecture is
shown in Figure 1. The model has two separate input layers,
one for IO size and one for LBA delta, where each input
layer is an embedding layer consisting of 500 neurons. The
inputs to the model are categorical, one-hot, representation
of the two features, LBA deltas and IO size, each being fed
to separate embedding layers. The model has two hidden
LSTM [3] layers, where each LSTM layer has 500 hidden
nodes. The outputs of the two embedding layers are first
concatenated and then fed to the shared LSTM layers. The
final output layer is split into two branches, where each
branch is a dense layer consisting of softmax nodes. The
number of neurons in the LBA delta output layer is 1001,
representing top 1000 LBA deltas and a “no prefetch" LBA
delta, and the number of neurons in the IO size output layer
ranged between 12-20, depending on the dataset. The number
of neurons in each of the first three layers of the model was
set to 500 to ensure a good representation of input features,
and we used a dropout of 0.2 to prevent overfitting of the
model. Having an initial embedding layer facilitates better
representation of the input features and helps the LSTM
layers to learn effectively from sequential data.

For a fair comparison of our proposed prefetcher against
prior baselines, evaluating just the precision and recall is not
sufficient. As motivated before, analyzing the prefetcher’s
timeliness is necessary to evaluate the end-to-end perfor-
mance gains of prefetching, as even the most accurate
prefetcher will not improve the performance if it lacks time-
liness. In order to compensate for the model’s prediction
latency and the latency to perform a read from the SSD, it

is required to generate predictions ahead of time (𝑃𝐴). We
evaluate the end-to-end performance as follows. As we iter-
ate through the test dataset, the trained models continuously
generate prefetch candidate predictions that are inserted
into the cache. Every IO access is checked against the cache,
and if the LBA is present in cache, it is recorded as a hit,
otherwise it is recorded as a miss. We utilize the Least Re-
cently Used (LRU) [5] eviction policy for our experiments.
The architecture of the simulator is presented in Fig. 2.

3 RESULTS
Table 1 shows the comparative performance of our neural
network based pre-fetcher against three chosen baselines
based on accuracy, precision, and recall results. For each
sample, our prefetcher predicts both LBA and IO size in
increments of 4KB blocks, as the minimum block size for
a drive operation in SSD is typically of 4KB size. We only
count the actual blocks that are correctly prefetched. For
each data sample, we prefetch only the top predicted LBA
and IO size using the prediction with the highest confidence.
For model training, we used a batch size of 64, look back of 64,
and predict-ahead of 64 in our experiments. Each prefetcher
was provided a cache size of 1000. Our proposed prefetcher
consistently outperforms all three baselines delivering up to
11× improvements over the stride prefetcher [4] using Mi-
crosoft SNIA traces with the same cache size. For VDI traces,
our proposed prefetcher achieved the highest accuracy, pro-
viding 800× improvements over the stride prefetcher. Our
prefetcher also achieved the highest precision and recall com-
pared to the baselines. The Markov chain based prefetcher
performed considerably worse compared to our prefetcher,
with the accuracy ranging between 7% and 25%, performing
even worse than the Naive prefetcher in several cases.

REFERENCES
[1] Chandranil Chakraborttii and Heiner Litz. 2020. Learning i/o access

patterns to improve prefetching in ssds. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer,
427–443.

[2] WU Fengguang, XI Hongsheng, and XU Chenfeng. 2008. On the design
of a new linux readahead framework. ACM SIGOPS Operating Systems
Review 42, 5 (2008), 75–84.

[3] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term mem-
ory. Neural computation 9, 8 (1997), 1735–1780.

[4] Ando Ki and Alan E Knowles. 2000. Stride prefetching for the secondary
data cache. Journal of systems architecture 46, 12 (2000), 1093–1102.

[5] Arezki Laga, Jalil Boukhobza, Michel Koskas, and Frank Singhoff. 2016.
Lynx: A learning linux prefetching mechanism for ssd performance
model. In 2016 5th Non-Volatile Memory Systems and Applications Sym-
posium (NVMSA). IEEE, 1–6.

[6] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo, Naoto
Fukumoto, and Mariko Sugawara. 2017. Understanding storage traffic
characteristics on enterprise virtual desktop infrastructure. In Proceed-
ings of the 10th ACM International Systems and Storage Conference. 1–11.


	Abstract
	1 Introduction
	2 Methodology
	3 Results
	References

