
github.com/jnvm-project/jnvmContact

Authors
Anatole Lefort
Yohan Pipereau
Kwabena Amponsem
Pierre Sutra
Gaël Thomas

[firstname].[surname][at]telecom-sudparis.eu

J-NVM:
Off-heap Persistent Objects in Java

PMEM in Java
Background
■ Java language used in many data 

stores and processing frameworks

■ NVMM = byte-addressable non-volatile 
memory (persistent + DRAM speed)

■ Filesystem or JNI are not efficient 
enough to access NVMM

■ Prior works for managed language 
runtimes propose orthogonal data 
persistence, leading to inefficiencies 
and difficulties in programming NVMM

■ No solution for garbage collection: 
language runtimes cannot scale to 
persistent dataset size

Off-heap Persistent Objects
Decoupling = persistent data 
structure + volatile proxy
■ Persistent data structure allocated 

off-heap (NVMM), unmanaged by the 
language runtime

■ Proxy object instantiated lazily 
on-heap (DRAM), managed by the 
language runtime, intermediate the 
access to data structure (methods), 
re-constructed when dereferencing a 
persistent pointer

■ Explicit deallocation of the persistent 
data structure

■ Recovery-time GC to allow 
non-crash-consistent NVMM 
management

■ Objects are alive as long as they are 
reachable from a root object.

■ Dynamic root object definition using 
naming in a global registry (persistent 
map)

J-NVM: high-level API
Implementation: 
A java library and framework
■ Code-generator: automated 

conversion of POJOs

■ J-PFA: generic crash consistent data 
manipulation through failure-atomic 
blocks of code

■ J-PDT: hand-made efficient persistent 
data types, including drop-in 
replacement for some of the JDK 
classes (e.g., collections)

■ Low-level API: custom proxy building 
with direct memory access intrinsics for 
fine-grained persistence and 
performance

Efficient PMEM access
Evaluation: 
YCSB and TPC-B like benchmarks
■ Up-to 10.5x faster than FS-based 

persistence on NVRAM

■ No need for a volatile cache 

■ 5x faster recovery time for 10M objects

■ Around 50% slower than the DRAM 
baseline

■ J-PDT up to 65% faster than J-PFA

addr

Map root = JNVM.root();
Simple s = root.get(“Simple”);
s.setX(42);

(DRAM)

(PMEM)

0 8 12
42

YCSB workloads

ext4-dax JNI + PMDK

Infinispan durable back stores

Hardware: 4 Intel CLX 6230 HT (80-core), 128GB DDR4, 4*128GB Optane DC (gen1)

D
ecoupling illustra

ted


