NVMW’'22

Hardware/Software Co-Programmable Framework
for Computational SSDs to Accelerate Deep

Learning Service on Large-Scale Graphs

Miryeong Kwon, Donghyun Gouk, Sangwon Lee, Myoungsoo Jung

Computer Architecture and Memory systems Laboratory

KAIST pamElah &

First Step

High-level summary of talk

GNN have shown
great success

WSesSes

WV
PN
> 4r\§% i,

j;—@ High accuracy

/
/ Well accelerated

4

KAIST

(&

First Step

High-level summary of talk

GNN have shown
great success

j;—@ High accuracy

/
/ Well accelerated

77

KAIST

GNN preprocessing is
missed out on

.n.#

Current GNN works
are only focusing
on GNN algorithms

(&

First Step

High-level summary of talk

GNN have shown GNN preprocessing is Now, we need
great success missed out on “HolisticGNN"
(/
D/

/

} o R TN

_.:’@ High daccuracy Current GNN works By leveraging
g are only focusing
’ .
, Well accelerated on GNN algorithms

77

KAIST .

1. Background

2. Motivation and Design Considerations

3. Overview of HolisticGNN Framework

4. Details of HolisticGNN Components

5. Evaluation

KAIST 5

(e

Graph Neural Networks (GNN)
Why is it emerging?

Conventional CNN Model Emerging GNN Model

Regular data in Euclidean space Irregular data in non-Euclidean space
(Learning information: "Euclidean distance”) (Learning information: “Relationship”)
Response of CNN model Response of GNN model

| Query image -

.~
36 £ i Ao
R ;‘L ‘gf Characteristic: “pain”

“Women near the sofa”

(&

I(AI ST Image source: Personalized Image Retrieval with Sparse Graph Representation Learning (KDD’20) 6

Graph Neural Networks (GNN)
Why is it emerging?

How can GNN
algorithm learn
the relationship?

I(AI ST Image source: Personalized Image Retrieval with Sparse Graph Representation Learning (KDD’20)

(&

Graph Neural Networks (GNN)
GNN algorithm

Input

"

b 11 4 \ 1 4
Graph structure

1?) 0.110.8(1 {0.2] 0 [1 {0.8|0.7| 1
-

01101 11]08|01f1102|0
»|04(0.8] 110.1(/0.2|10.8|0.2 0 |04

‘0 0.2|0.3|0.2{0.8|0.5|0.410.6|0.9]0.5

o
v

v

Node embedding

KAIST

(&

Graph Neural Networks (GNN)
GNN algorithm

0

Input

é\

(o)

#1: Aggregation

D 4a»
Graph structure }
0 &
9 0.1/0.8| 1 {0.2] 0| 1 (0.8]0.7| 1 q | "’
ﬂO 11011 1]0.8(0.1] 1 {0.2] O h -
1?’ 04108! 1 (0.110.2]10.810.2| 0 |04 [0.2]0.3]0.2]0.8]0.5]0.4]0.6[0.9]0.5] [0.1]0.8[1]0.2[o[1]0.8[0.7] 1| [0.4]0.8]1]0.1]0.2[0.8]0.2] 0 [0.4|
f’. 0.2(0.310.2(0.8|0.5|0.4(0.6|0.9(0.5
Node embedding
P
KAIST a8
N

Graph Neural Networks (GNN)

GNN algorithm

Input

0 \@

LY i 104
Graph structure

@ 0.110.8(1 {0.2] 0 | 1 {0.8]|0.7

#1: Aggregation #2: Transformation

n 0f(11]01(11]08(0.1]1[02]|0
1?) 0.410.8| 1 |0.110.2/0.8|0.2| 0 |0.4 [0.2]0.3]0.2]0.8]0.5]0.4]0.6[0.9]0.5] [0.1]0.8[1]0.2[o[1]0.8[0.7] 1| [0.4]0.8]1]0.1]0.2[0.8]0.2] 0 [0.4|
‘Q, 0.2(0.3|0.2|0.8]/0.5(/0.4|0.6|0.9|0.5
Node embedding
CJ
KAIST o Q8

Graph Neural Networks (GNN)
GNN algorithm

What do we have to do before GNN algorithm execution ?

KAIST

11

(&

Graph Neural Networks (GNN)
GNN algorithm

Input
P € \We have to prepare

neighbor-oriented

‘ \ graph structure
=

Y ¢

b ur 4ar
Graph structure

0.110.8(1 {0.2] 0 [1 {0.8|0.7| 1

a
N

Bvlo]1]o1]1]oslor]1]02]0 . O We need small
<»|04[08] 1 |0.1]0.2|0.8[0.2| 0 |0.4 input data Wh'_Ch can
&} 10.2/0.3]0.2{0.8]0.5{0.4]0.6]0.9]0.5 be loaded into
, accelerator memor
Node embedding y

(&

GNN Preprocessing

Graph preprocessing: to prepare neighbor-oriented graph structure

Graph preprocessing
converts edge array to
“adjacency list” which is

neighbor-oriented

“—Q 10»—0 1?»— |
>—0O0—3 600 o/n \.

I (=
L G4 QD

0o 060
1?»49 Qie n—iob

KAIST L

Graph structure is stored
as “edge array” which is
update-friendly

GNN Preprocessing

Batch preprocessing: to prepare small graph

Insight: “Node sampling”
can significantly reduce the
amount of data to process

\ without an accuracy loss

© ~
4 "N/

14

(&

GNN Preprocessing

Batch preprocessing: to prepare small graph

Graph structure sampling

Embedding sampling

‘
-

v
DODio

«drdanide o’b e

aN g

KAIST .

(&

1. Background

2. Motivation and Design Considerations

3. Overview of HolisticGNN Framework

4. Details of HolisticGNN Components

5. Evaluation

KAIST . Qi

End-to-End GNN Inference

Visualization

‘ Host CPU GPU

| | |
Edge {\:?; O—0 &— 0 /[\ .
arra _fb 0 "-
o] Feacgee ':/e{é L l& IR
—@ ®—000 8 <

I:[SSD 1101010100111001001111 Host DRAM | 1161610160 | GPU DRAM

Entire edge array Entire adj. list Sampled adj. list
\{\
Embe
dding| DEE——)
Ixt /
a 3
“Entire embed Sampled embed
KAIST i

End-to-End GNN Inference

Execution time analysis

‘ Host CPU GPU Graph size (# of edges) S
SSD 1101010100111601001111 Host DRAM | 11010108160 | GPU DRAM
I | I _FB 100'...----
n : P] E
Edge . O 9 75- :
aray | | Graph preprocessing m—) /-'J 29_,50_ = :
| (CPU) , Batch ¢ Pure W @ o5l T HFTH
g : ~ prepro’™"infere = £ 0 : =10E OOM
[‘_.__,é . nce ham I_ - P — — — w. — T T T -x -_
[\]
o e85 =2 8¥3RE3
Entire embed Sampled embed .S O S O &~ e g ,_O_ S =
KAIST i

End-to-End GNN Inference

Execution time analysis

Oops.. Graph preprocessing and
embedding 1/0 is dominant
contributor of the end-to-end GNN
inference (NOT pure GNN inference!)

KAIST

Graph size (# of edges)

>
2 100'_'.-.-.---—-—:
8/‘\75- i
ox S L
) HHIH - :
E'gzgjw_nlé OOM
LI_ - P —— — ey T T T T —
= =n=0n X X
S cO0ESSSE #8388%¢T
Z OVl S0 j @ LN I-I—‘E
EL239 o2 o08%232F8=o
%-50'0 Og £090==

(&

Design Questions
Then, what does GNN acceleration look like?

Store graph directly as a
) neighbor-oriented format

Graph preprocessing

(CPU) (But also, update-efficient)
Embedding 1/0 Q Process end-to-end GNN
(CPU) inference near storage
KAIST o0 Q8

1. Background

2. Motivation and Design Considerations

3. Overview of HolisticGNN Framework

4. Details of HolisticGNN Components

5. Evaluation

KAIST 21

(e

HolisticGNN
Adopts the concept of computational SSD (CSSD)

CSSD decouples the
compute unit from the
storage resources
unlike conventional ISP
(In-Storage Processing)

(e

KAIST N

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Our proposed
Hardware/Software co-
programmable framework

Is executing on FPGA

KAIST

)

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Shell region is for
essential HW logics of

HolisticGNN Shell User |
1 DRAM | ¢ ,I O3
brAM 5 Ctrl. Core
|
DMA
engine I Bus
Pé:lle e—>le—>Xbuilder
Engine
—1 PCle
>D F switch | ““““
.~ J
KAIST &

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

User region is for GNN
__ Iinference acceleration
(user-customizable) User

Co-
O3 EE processor
CO re ports

I
System
Bus EE bus lanes

Xbuilder
Engine

(&

KAIST .

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

User
Co-
O3 EE processor
Core ports
bitfile '

System
=T Bus EE bus lanes

Xbuilder 7
Hardwarg S |
programming

(&

KAIST *

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

HolisticGNN also
provides three types of
algorithm accelerators

User
Co-

Octa-core | Cora0 | 3 C%?e E!E prggﬁzor

System
Bus EE bus lanes

Many SAs“C'e

Systolic Systolic Xbuilder
S array Engine
Hetero
Systolic | ey Vector |
array | processor
CJ
IST —

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

O3 core executes
GraphStore and
GraphRunner

O3
Core

KAIST

*
*
*
*
*
*
*
*
*
*
*
*
*
*
.0
*

*
*
*
*
*
*
*
*
*
*
*
*
*
‘Q
*

28

)

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Edge array

A—0 60
&—60 00—
Q—ﬂ q?»_@@
1?»_@ 0—0

Embedding

GraphStore converts
edge array to

KAIST

O3
Core

SSD

Adjacency

adjacency list and

store it to SSD

SD0DOD>D

Embedding

14
*
*
*
*
*
*
.0
*

(&

29

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

GraphRunner
processes both
GNN preprocessing
and algorithm

GraphRunner can
access graph data via
GraphStore APIs

(&

KAIST o

1. Background

2. Motivation and Design Considerations

3. Overview of HolisticGNN Framework

4. Details of HolisticGNN Components

5. Evaluation

KAIST o Q

(e

GraphStore

Graph-centric archiving system

4)
SSD space
Graph
Semantic nloeceoo . GraphStore separates
(e.g., Vertex ID) seleco @00 Neighbor SSD space into two
Programmer 600|000 000 >pace for making sure
(user) @ update-efficient

GraphStore

i)

Hardware é A
SSD o Embedding
semantic ¥ space
(e.g., LBA) ? v
\ J

(&

KAIST ;

GraphStore

Graph-centric archiving system

Why are there
two types of
. M ?
neighbor list: N 00000
00 6060 6000
600 000 006

KAIST

(&

GraphStore

Graph-centric archiving system

Page: size Insight comes from
power-law distribution of

Low- { High- degree (# of neighbors)

frequency(d) | degree : degree , =
type type X Nature characteristic of graph
> €

A

>
degree(d)

KAIST

34

(&

GraphStore

Graph-centric archiving system

Page size
low- High- High-d t
A gh-degree type
frequency(d) T degree : degree mapping table v1 LPNO (High-degree type)

type i type
> €

S

Nl SR TN T — » 00000
LPN1 (Low-degree type)

> Low-degree type . 0 9 ﬂ@@) ﬂ(’*@

mapping table

“‘
““
.

V2 | LPN1 V4 V5 LPN2 (Low-degree type)

VA | LPN2 | cereserees= » OO0 000 006

>
degree(d)

KAIST .

(&

GraphStore

Graph-centric archiving system

If new neighbor is added,
GraphStore allocates one

more LPN (LPN4) to High-degree type
Vertex 1 (V1) mapping table v1 LPNO (High-degree type)
V1 ! LPNO | LPN4 [sseeeess 0 00000
......... LPN4 (High-degree type)
*n[o
KAIST -

GraphStore

Graph-centric archiving system

As there are multiple
neighbor lists in a single
LPN, low-degree type
mapping table recorded
the lowest vertex ID

Low-degree type

mapping table

V2

LPN1

V4

LPN2

“‘
““
.

LPN1 (Low-degree type)

000

V4 v5 LPN2 (Low-degree type)

= s

QG b

Q06

KAIST

37

(&

GraphRunner

Programmable inference model

A B Programmer programs
Program the GNN inference
e
(e.g., Operation) grap
Programmer C
(user)
GraphRunner
Hardware A 5 Grathu.nner converts
operation to kernel
Execution and executes the DFG
Semantic
(e.g., Kernel)
C
KAIST i

GraphRunner

Programmable inference model

KAIST

BTW, why are there
gap between program
semantic and
execution semantic?

39

(&

GraphRunner

Programmable inference model

Because there are many
devices which can process

the same operation!

Device table Operation table
Device Name Priority Operation Kernel .
"CPU” 50 Name
"Accelerator1” 150 “Vector " <CPU pt? -
e <"Accelerator1”, ptr> .=+
addition

Memory space

Vector addition
o (CPU code)

Vector addition
o (Accelerator1
code)

KAIST

(&

40

GraphRunner

Programmable inference model

Users can add their own
accelerator and also
accelerator’s kernel ©

Device table

Operation table

Memory space

Vector addition
o (CPU code)

Device Name Priority Operation R E——
Kernel . "
P Name R Vector addition
CPU >0 (Accelerator1
“Accelerator1” 150 "Vector <'CPU, ptr> Y

N <"Acceleratorl”, ptr> .s****"
addition P

Ty
ay
....
u,
n

Vector addition
(Accelerator?
code)

KAIST

(&

41

1. Background

2. Motivation and Design Considerations

3. Overview of HolisticGNN Framework

4. Details of HolisticGNN Components

5. Evaluation

KAIST 2

(e

Experimental Setup
HolisticGNN prototype

14nm FPGA

(e

KAIST s

Experimental Setup

Graph dataset

Small
(<1M Edge)

A

Vertices Edges Feature length
chmleon 2.3K 65K 2326
citeseer 2.1K 9K 3704
cormal 3.0K 19K 2880
dblpfull 17.7K 123K 1639
cs 18.3K 182K 6805
corafull 19.8K 147K 8710

* physics 34.5K 530K 8415
road-tx 1.39M 3.84M 4353

Large
(>3M Edge)

KAIST

v

road-pa 1.09M 3.08M 4353
youtube 1.16M 2.99M 4353
road-ca 1.97M 5.53M 4353
wikitalk 2.39M 5.02M 4353
ljournal 4.85M 68.99M 4353

(&

Evaluation Results
End-to-End latency comparison

Small graph:
1.69x RTX 1060 [] GTX 3090 [l HolisticGNN

AMD Ryzen DDR4-2666 ()]
—
l / S .
GTX 1060 s 8

<0 ChE=ET=0nN=nNXOO

W 50583588583

. ()] m‘-l— il 1

9 n o © w-O'OB

= CO00 52%a5

= 200 &£ 09 OO0

§ S0 Cao== 5

(&

Evaluation Results
End-to-End latency comparison

RTX 1060 [] GTX 3090 [HolisticGNN

AMD Ryzen DDR4-2666
<l R— 10.03
= 2
GTX 101 8 i -0.02
LW 5058586738 L 0.01
. ()] m‘-l— il 1 .
9 n o © w-O'OB
= CO00 52%a5
o = 0 SSPo00
e <0 O O Q- 9 =
7 O '000
Large graph
KAIST o Qi

Evaluation Results
Energy Consumption

33.2x and 16.3x
better than GTX

3090, RTX 1060

RTX 1060 [] GTX 3090 [HolisticGNN

’_‘;1' Small graph §20_ _ Large graph

i = _

— I]

- >104.

> 1071l .

Q (o 20
CET=0N=0 X OO 0Xg

L] 88%‘203'9 LI o0 0GY
2PSE B L SGE
E0O08 o2& CFTS5 GX 2
£=0T 0F 0c8338s2

KAIST

(&

Evaluation Resul
Energy Consumption

ts

RTX 1060

GTX 3090 [B HolisticGNN

A
1

Small graph

o

Energy (kJ)
chmleon

citeseer
coraml
dblpfull
CS
corafull
physics

KAIST

Ener

I §20_ _ Large graph

>104,

Due to low-power
computing of

FPGA

o

road-tx|
road-pa
youtube|

wikitalk |

road-ca
ljournal

453.2x lower

100
80
60 3
40 @
20

\
n

0

48

(&

Demo
GNN execution in our HolisticGNN prototype

KAIST

49

(&

Conclusion

HolisticGNN is a “hardware/software co-programmable
framework for computational SSDs"

1) Holistic solution for both GNN algorithm and preprocessing
2) Fast and energy-efficient near-storage inference infrastructure
3) Easy-to-use and user-customizable

(&

KAIST

rank You

Contact eryeong Kwon (mkwon@camelab org)

	Hardware/Software Co-Programmable Framework for Computational SSDs to Accelerate Deep Learning Service on Large-Scale Graphs
	First Step
	First Step
	First Step
	Slide Number 5
	Graph Neural Networks (GNN)
	Graph Neural Networks (GNN)
	Graph Neural Networks (GNN)
	Graph Neural Networks (GNN)
	Graph Neural Networks (GNN)
	Graph Neural Networks (GNN)
	Graph Neural Networks (GNN)
	GNN Preprocessing
	GNN Preprocessing
	GNN Preprocessing
	Slide Number 16
	End-to-End GNN Inference
	End-to-End GNN Inference
	End-to-End GNN Inference
	Design Questions
	Slide Number 21
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	Slide Number 31
	GraphStore
	GraphStore
	GraphStore
	GraphStore
	GraphStore
	GraphStore
	GraphRunner
	GraphRunner
	GraphRunner
	GraphRunner
	Slide Number 42
	Experimental Setup
	Experimental Setup
	Evaluation Results
	Evaluation Results
	Evaluation Results
	Evaluation Results
	Demo
	Conclusion
	Slide Number 51

