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First Step

High-level summary of talk

GNN have shown GNN preprocessing is Now, we need
great success missed out on “HolisticGNN"
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2. Motivation and Design Considerations

3. Overview of HolisticGNN Framework

4. Details of HolisticGNN Components

5. Evaluation
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Graph Neural Networks (GNN)
Why is it emerging?

Conventional CNN Model Emerging GNN Model

Regular data in Euclidean space Irregular data in non-Euclidean space
(Learning information: "Euclidean distance”) (Learning information: “Relationship”)
Response of CNN model Response of GNN model

| Query image -

.~
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R ;‘L ‘gf Characteristic: “pain”

“Women near the sofa”
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Graph Neural Networks (GNN)
Why is it emerging?

How can GNN
algorithm learn
the relationship?

I(AI ST Image source: Personalized Image Retrieval with Sparse Graph Representation Learning (KDD’20)
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Graph Neural Networks (GNN)
GNN algorithm

Input
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Graph Neural Networks (GNN)
GNN algorithm

0

Input
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Graph Neural Networks (GNN)

GNN algorithm

Input
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Graph structure
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Graph Neural Networks (GNN)
GNN algorithm

What do we have to do before GNN algorithm execution ?

KAIST

11

(&



Graph Neural Networks (GNN)
GNN algorithm

Input
P € \We have to prepare

neighbor-oriented

‘ \ graph structure
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GNN Preprocessing

Graph preprocessing: to prepare neighbor-oriented graph structure

Graph preprocessing
converts edge array to
“adjacency list” which is

neighbor-oriented
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Graph structure is stored
as “edge array” which is
update-friendly




GNN Preprocessing

Batch preprocessing: to prepare small graph

Insight: “Node sampling”
can significantly reduce the
amount of data to process

\ without an accuracy loss
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GNN Preprocessing

Batch preprocessing: to prepare small graph

Graph structure sampling

Embedding sampling
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End-to-End GNN Inference

Visualization

‘ Host CPU GPU
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End-to-End GNN Inference

Execution time analysis
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End-to-End GNN Inference

Execution time analysis

Oops.. Graph preprocessing and
embedding 1/0 is dominant
contributor of the end-to-end GNN
inference (NOT pure GNN inference!)
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Design Questions
Then, what does GNN acceleration look like?

Store graph directly as a
) neighbor-oriented format

Graph preprocessing

(CPU) (But also, update-efficient)
Embedding 1/0 Q Process end-to-end GNN
(CPU) inference near storage
KAIST o0 Q8
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HolisticGNN
Adopts the concept of computational SSD (CSSD)

CSSD decouples the
compute unit from the
storage resources
unlike conventional ISP
(In-Storage Processing)
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Our proposed
Hardware/Software co-
programmable framework

Is executing on FPGA
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Shell region is for
essential HW logics of

HolisticGNN Shell User |
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

User region is for GNN
__ Iinference acceleration
(user-customizable) User

Co-
O3 EE processor
CO re ports

I
System
Bus EE bus lanes

Xbuilder
Engine
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

User
Co-
O3 EE processor
Core ports
bitfile '

System
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

HolisticGNN also
provides three types of
algorithm accelerators
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

O3 core executes
GraphStore and
GraphRunner
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Core
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Edge array
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Embedding
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edge array to
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

GraphRunner
processes both
GNN preprocessing
and algorithm

GraphRunner can
access graph data via
GraphStore APIs
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GraphStore

Graph-centric archiving system

4 )
SSD space
Graph
Semantic nloeceoo . GraphStore separates
(e.g., Vertex ID) seleco @00 Neighbor SSD space into two
Programmer 600|000 000 >pace for making sure
(user) @ update-efficient

GraphStore
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GraphStore

Graph-centric archiving system

Why are there
two types of
. M ?
neighbor list: N 00000
00 6060 6000
600 000 006

KAIST
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GraphStore

Graph-centric archiving system

Page: size Insight comes from
power-law distribution of

Low- { High- degree (# of neighbors)

frequency(d) | degree : degree , =
type type X Nature characteristic of graph
> €

A

>
degree(d)
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GraphStore

Graph-centric archiving system

Page size
low- High- High-d t
A gh-degree type
frequency(d) T degree : degree mapping table v1 LPNO (High-degree type)
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GraphStore

Graph-centric archiving system

If new neighbor is added,
GraphStore allocates one

more LPN (LPN4) to High-degree type
Vertex 1 (V1) mapping table v1 LPNO (High-degree type)
V1 ! LPNO | LPN4 [sseeeess 0 00000
......... LPN4 (High-degree type)
*n[o
KAIST -




GraphStore

Graph-centric archiving system

As there are multiple
neighbor lists in a single
LPN, low-degree type
mapping table recorded
the lowest vertex ID

Low-degree type

mapping table

V2

LPN1

V4

LPN2
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GraphRunner

Programmable inference model

A B Programmer programs
Program the GNN inference
e
(e.g., Operation) grap
Programmer C
(user)
GraphRunner
Hardware A 5 Grathu.nner converts
operation to kernel
Execution and executes the DFG
Semantic
(e.g., Kernel)
C
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GraphRunner

Programmable inference model

KAIST

BTW, why are there
gap between program
semantic and
execution semantic?
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GraphRunner

Programmable inference model

Because there are many
devices which can process

the same operation!

Device table Operation table
Device Name Priority Operation Kernel .
"CPU” 50 Name
"Accelerator1” 150 “Vector " <CPU pt? -
e <"Accelerator1”, ptr> .=+
addition

Memory space

Vector addition
o (CPU code)

Vector addition
o (Accelerator1
code)

KAIST
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GraphRunner

Programmable inference model

Users can add their own
accelerator and also
accelerator’s kernel ©

Device table

Operation table

Memory space

Vector addition
o (CPU code)

Device Name Priority Operation R E——
Kernel . "
P Name R Vector addition
CPU >0 (Accelerator1
“Accelerator1” 150 "Vector <'CPU, ptr> Y

N <"Acceleratorl”, ptr> .s****"
addition P

Ty
ay
....
u,
n

Vector addition
(Accelerator?
code)
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Experimental Setup
HolisticGNN prototype

14nm FPGA
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Experimental Setup

Graph dataset

Small
(<1M Edge)

A

Vertices Edges Feature length
chmleon 2.3K 65K 2326
citeseer 2.1K 9K 3704
cormal 3.0K 19K 2880
dblpfull 17.7K 123K 1639
cs 18.3K 182K 6805
corafull 19.8K 147K 8710

* physics 34.5K 530K 8415
road-tx 1.39M 3.84M 4353

Large
(>3M Edge)

KAIST

v

road-pa 1.09M 3.08M 4353
youtube 1.16M 2.99M 4353
road-ca 1.97M 5.53M 4353
wikitalk 2.39M 5.02M 4353
ljournal 4.85M 68.99M 4353
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Evaluation Results
End-to-End latency comparison

Small graph:
1.69x RTX 1060 [ ] GTX 3090 [l HolisticGNN
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Evaluation Results
End-to-End latency comparison

RTX 1060 [ ] GTX 3090 [ HolisticGNN
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Evaluation Results
Energy Consumption

33.2x and 16.3x
better than GTX

3090, RTX 1060

RTX 1060 [ ] GTX 3090 [ HolisticGNN
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Evaluation Resul
Energy Consumption

ts

RTX 1060

GTX 3090 [B HolisticGNN
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Small graph
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Energy (kJ)
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Demo
GNN execution in our HolisticGNN prototype
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Conclusion

HolisticGNN is a “hardware/software co-programmable
framework for computational SSDs"

1) Holistic solution for both GNN algorithm and preprocessing
2) Fast and energy-efficient near-storage inference infrastructure
3) Easy-to-use and user-customizable
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rank You

Contact eryeong Kwon (mkwon@camelab org)
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