Concentrated Stopping Set Design for Coded Merkle Tree: Improving Security Against Data Availability Attacks in Blockchain Systems

Debarnab Mitra, Lev Tauz, and Lara Dolecek

Electrical and Computer Engineering University of California, Los Angeles

Non-Volatile Memories Workshop May 10, 2022

Table of Contents

- 1. Blockchain Background
- 2. Data Availability Attacks
- 3. LDPC Code Design
- 4. Conclusion

► Institutional Trust Systems

► Institutional Trust Systems

- Institutional Trust Systems
 - All parties trust an established institution

- Institutional Trust Systems
 - · All parties trust an established institution

► Distributed/Decentralized Trust Systems

- Institutional Trust Systems
 - · All parties trust an established institution

- Distributed/Decentralized Trust Systems
 - Multiple parties collaborate on a specific task without parties trusting one another

- Institutional Trust Systems
 - · All parties trust an established institution

- Distributed/Decentralized Trust Systems
 - Multiple parties collaborate on a specific task without parties trusting one another

Blockchain:

- Institutional Trust Systems
 - All parties trust an established institution

- Distributed/Decentralized Trust Systems

 Multiple parties collaborate on a specific
 - Multiple parties collaborate on a specific task without parties trusting one another

☐ Blockchain: Allows for decentralized trust systems

- Institutional Trust Systems
 - All parties trust an established institution

- Distributed/Decentralized Trust Systems
 - Multiple parties collaborate on a specific task without parties trusting one another

- Blockchain: Allows for decentralized trust systems
 - Main application of Blockchain: Currency and Finance

- ► Ledger of transactions
- Arranged in the form of blocks

- Ledger of transactions
- Arranged in the form of blocks
- ► Stored by a network of nodes

- Ledger of transactions
- Arranged in the form of blocks
- Stored by a network of nodes
- Nodes store the ledger in their memory

- Ledger of transactions
- Arranged in the form of blocks
- Stored by a network of nodes
- Nodes store the ledger in their memory
- Operate on the ledger to validate transactions

- Ledger of transactions
- Arranged in the form of blocks
- Stored by a network of nodes
- Nodes store the ledger in their memory
- Operate on the ledger to validate transactions

NVM technologies like persistent memories: low latency, high reliability

- Ledger of transactions
- Arranged in the form of blocks
- Stored by a network of nodes
- Nodes store the ledger in their memory
- Operate on the ledger to validate transactions

NVM technologies like persistent memories: low latency, high reliability

4 Faster blockchains

 Each node stores a copy of the ledger in its memory

Significant storage overhead

 Each node stores a copy of the ledger in its memory

Significant storage overhead

- ▶ Bitcoin ledger size ~ 300GB¹
- ▶ Ethereum ledger size $\sim 650 \text{GB}^2$

As of 4/28/2022, ¹https://www.blockchain.com/charts/blocks-size ²https://etherscan.io/chartsync/chaindefault

- Each node stores a copy of the ledger in its memory
- Prohibitive for resource limited nodes

- Significant storage overhead
- ▶ Bitcoin ledger size ~ 300GB¹
- ▶ Ethereum ledger size $\sim 650 \text{GB}^2$

As of 4/28/2022, 1 https://www.blockchain.com/charts/blocks-size 2 https://etherscan.io/chartsync/chaindefault

Light Nodes

Light Nodes:

lacktriangle Only store block headers (total size $\sim 1 \mathrm{GB}$ for Ethereum)

- lacktriangle Only store block headers (total size \sim 1GB for Ethereum)
- Can verify transaction inclusion in a block

- lacktriangle Only store block headers (total size \sim 1GB for Ethereum)
- Can verify transaction inclusion in a block
- Cannot verify transaction correctness

- lacktriangle Only store block headers (total size \sim 1GB for Ethereum)
- Can verify transaction inclusion in a block
- ► Cannot verify transaction correctness → Rely on honest Full nodes for fraud notification

- lacktriangle Only store block headers (total size \sim 1GB for Ethereum)
- Can verify transaction inclusion in a block
- ► Cannot verify transaction correctness
 → Rely on honest Full nodes for fraud notification
- Full nodes send verifiable fraud proofs to the light nodes to reject invalid blocks

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary creates an invalid block

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary creates an invalid block

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary: Provides block to Full node but hides invalid portion

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary: Provides block to Full node but hides invalid portion Provides header to Light node

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- ► Honest Nodes: Cannot verify missing transactions

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- ightharpoonup Honest Nodes: Cannot verify missing transactions ightarrow No fraud proof

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- lacktriangle Honest Nodes: Cannot verify missing transactions ightarrow No fraud proof
- Light Nodes: No fraud proof

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- lacktriangle Honest Nodes: Cannot verify missing transactions ightarrow No fraud proof
- lacktriangle Light Nodes: No fraud proof ightarrow Accept the header

Ensuring Data Availability

Request/sample few random chunks of the block

- Request/sample few random chunks of the block
- Adversary can hide a small portion

- Request/sample few random chunks of the block
- Adversary can hide a small portion

- Request/sample few random chunks of the block
- Adversary can hide a small portion

- Request/sample few random chunks of the block
- Adversary can hide a small portion

- Request/sample few random chunks of the block
- Adversary can hide a small portion

Probability of failure using 2 random samples:

- Request/sample few random chunks of the block
- Adversary can hide a small portion

- Request/sample few random chunks of the block
- Adversary can hide a small portion

No coding:

Probability of failure using 2 random samples:

$$\left(1 - \frac{1}{16}\right) \left(1 - \frac{1}{15}\right) = 0.87$$

Erasure coding:

- Request/sample few random chunks of the block
- Adversary can hide a small portion

No coding:

Probability of failure using 2 random samples:

$$\left(1 - \frac{1}{16}\right) \left(1 - \frac{1}{15}\right) = 0.87$$

Erasure coding:

- Request/sample few random chunks of the block
- Adversary can hide a small portion

No coding:

Probability of failure using 2 random samples:

$$\left(1 - \frac{1}{16}\right) \left(1 - \frac{1}{15}\right) = 0.87$$

Erasure coding:

Probability of failure using 2 random samples:

$$\left(1 - \frac{17}{32}\right) \left(1 - \frac{17}{31}\right) = 0.21$$

► Incorrect coding attack:

- Incorrect coding attack:
 - Adversary sends incorrectly coded block to Full Nodes

- Incorrect coding attack:
 - Adversary sends incorrectly coded block to Full Nodes
 - · Honest Full nodes can detect and send incorrect coding proof
 - Incorrect coding proof size: $\mathcal{O}(\text{sparsity of parity check equations})$

- Incorrect coding attack:
 - Adversary sends incorrectly coded block to Full Nodes
 - · Honest Full nodes can detect and send incorrect coding proof
 - Incorrect coding proof size: $\mathcal{O}(\text{sparsity of parity check equations})$
 - MDS codes: proof size = $\mathcal{O}(\text{block size})$

- Incorrect coding attack:
 - Adversary sends incorrectly coded block to Full Nodes
 - · Honest Full nodes can detect and send incorrect coding proof
 - Incorrect coding proof size: $\mathcal{O}(\text{sparsity of parity check equations})$
 - MDS codes: proof size = $\mathcal{O}(\text{block size})$
- Decoding complexity

- Incorrect coding attack:
 - Adversary sends incorrectly coded block to Full Nodes
 - Honest Full nodes can detect and send incorrect coding proof
 - Incorrect coding proof size: $\mathcal{O}(\text{sparsity of parity check equations})$
 - MDS codes: proof size = $\mathcal{O}(\text{block size})$
- Decoding complexity
- ightharpoonup Undecodable ratio α

- Incorrect coding attack:
 - Adversary sends incorrectly coded block to Full Nodes
 - Honest Full nodes can detect and send incorrect coding proof
 - Incorrect coding proof size: $\mathcal{O}(\text{sparsity of parity check equations})$
 - MDS codes: proof size = $\mathcal{O}(\text{block size})$
- Decoding complexity
- ightharpoonup Undecodable ratio α
 - Probability of Light node failure using s random samples = $(1 \alpha)^s$

LDPC codes:

► Characterized by a sparse parity check matrix

LDPC codes:

Characterized by a sparse parity check matrix

► Tanner Graph

circles: variable nodes (VNs) squares: check nodes (CNs)

LDPC codes:

► Characterized by a sparse parity check matrix

Tanner Graph

circles: variable nodes (VNs)
squares: check nodes (CNs)

LDPC codes have been shown to be suitable for this application [Yu' 19]

LDPC codes:

Characterized by a sparse parity check matrix

Tanner Graph

circles: variable nodes (VNs)
squares: check nodes (CNs)

LDPC codes have been shown to be suitable for this application [Yu' 19]

► Small incorrect coding proof size due to small check node degree

LDPC codes:

Characterized by a sparse parity check matrix

Tanner Graph

circles: variable nodes (VNs)
squares: check nodes (CNs)

LDPC codes have been shown to be suitable for this application [Yu' 19]

- ► Small incorrect coding proof size due to small check node degree
- Linear decoding in terms of the block size using peeling decoder

LDPC codes:

Characterized by a sparse parity check matrix

Tanner Graph

circles: variable nodes (VNs)
squares: check nodes (CNs)

LDPC codes have been shown to be suitable for this application [Yu' 19]

- ► Small incorrect coding proof size due to small check node degree
- Linear decoding in terms of the block size using peeling decoder
- What about the undecodable ratio?

► Substructure in the Tanner Graph

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block → No fraud proof

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block → No fraud proof

Probability of failure using 2 random samples:

$$\left(1 - \frac{3}{32}\right) \left(1 - \frac{3}{31}\right) = 0.81$$

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block → No fraud proof

Probability of failure using 2 random samples:

$$\left(1 - \frac{3}{32}\right) \left(1 - \frac{3}{31}\right) = 0.81$$

Our work: Design of specialized LDPC codes with a coupled sampling strategy to achieve a significantly lower probability of failure.

In this presentation, we consider an adversary that randomly hides a stopping set of a particular size.

In this presentation, we consider an adversary that randomly hides a stopping set of a particular size.

4 Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]

In this presentation, we consider an adversary that randomly hides a stopping set of a particular size.

- 4 Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]
- 4 Stronger adversaries have been considered in full paper [Mitra '21]

In this presentation, we consider an adversary that randomly hides a stopping set of a particular size.

- □ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]

 □ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]

 □ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]

 □ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]

 □ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]

 □ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]

 □ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]

 □ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]

 □ Relevant in IoT blockchains [Wang '19]
- 4 Stronger adversaries have been considered in full paper [Mitra '21]

Lemma

Of all stopping sets (SSs) of size μ , when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L} , then

In this presentation, we consider an adversary that randomly hides a stopping set of a particular size.

- ↓ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]
- 4 Stronger adversaries have been considered in full paper [Mitra '21]

Lemma

Of all stopping sets (SSs) of size μ , when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L} , then

Probability of failure = 1 - fraction of SSs of size
$$\mu$$
 touched by \mathcal{L}

In this presentation, we consider an adversary that randomly hides a stopping set of a particular size.

- ↓ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]
- 4 Stronger adversaries have been considered in full paper [Mitra '21]

Lemma

Of all stopping sets (SSs) of size μ , when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L} , then

Probability of failure = 1 - fraction of SSs of size
$$\mu$$
 touched by \mathcal{L}

ightharpoonup Selecting a set \mathcal{L} of VNs which touches large no. of SSs

In this presentation, we consider an adversary that randomly hides a stopping set of a particular size.

- \cup\downarrow$ Relevant in IoT blockchains [Wang '19], Proof-of-Stake blockchains [Daian '19]$
- 4 Stronger adversaries have been considered in full paper [Mitra '21]

Lemma

Of all stopping sets (SSs) of size μ , when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L} , then

Probability of failure = 1 - fraction of SSs of size
$$\mu$$
 touched by \mathcal{L}

ightharpoonup Selecting a set $\mathcal L$ of VNs which touches large no. of SSs

 \rightarrow Prob. of failure \downarrow

Concentrated Stopping Set Design

Code Design Idea:

 Concentrate stopping sets to a small section of VNs

Concentrated Stopping Set Design

Code Design Idea:

 Concentrate stopping sets to a small section of VNs

Concentrated Stopping Set Design

Code Design Idea:

- Concentrate stopping sets to a small section of VNs
- Greedily Sample this small section of VNs

▶ When there are no degree 1 VNs, stopping sets are either cycles or interconnection of cycles [Tian '03]

- ▶ When there are no degree 1 VNs, stopping sets are either cycles or interconnection of cycles [Tian '03]
- ▶ Concentrating cycles ⇒ Concentrating stopping sets

- ▶ When there are no degree 1 VNs, stopping sets are either cycles or interconnection of cycles [Tian '03]
- ▶ Concentrating cycles ⇒ Concentrating stopping sets
 ↓ Directly concentrating stopping sets during code construction incurs huge complexity

- ▶ When there are no degree 1 VNs, stopping sets are either cycles or interconnection of cycles [Tian '03]
- Concentrating cycles ⇒ Concentrating stopping sets
 □ Directly concentrating stopping sets during code construction incurs huge complexity
- How to design codes with concentrated cycles?

- ▶ When there are no degree 1 VNs, stopping sets are either cycles or interconnection of cycles [Tian '03]
- ▶ Concentrating cycles ⇒ Concentrating stopping sets
 ↓ Directly concentrating stopping sets during code construction incurs huge complexity
- How to design codes with concentrated cycles?
 We do so by modifying the well-known Progressive Edge Growth (PEG) algorithm

Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j Expand Tanner Graph in a BFS fashion

CNs not connected to v_i

Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_i Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_i

Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_i

• Select a CN with min degree not connected to v_i

Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_i Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_j

• Select a CN with min degree not connected to v_i

Else

All CNs exhausted

Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_i

Expand Tanner Graph in a BFS fashion

If \exists CNs not connected to v_i

• Select a CN with min degree not connected to v_i

Else

- Find CNs most distant to v_i
- Select one with minimum degree

All CNs exhausted

Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_i

Expand Tanner Graph in a BFS fashion

If \exists CNs not connected to v_i

• Select a CN with min degree not connected to v_i

Else

- Find CNs most distant to v_i
- Select one with minimum degree New cycles created

All CNs exhausted

Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_i

Expand Tanner Graph in a BFS fashion

If \exists CNs not connected to v_i

• Select a CN with min degree not connected to v_i

Fise

- Find CNs most distant to v_i
- Select one with minimum degree New cycles created

We modify the CN selection criteria in green to concentrate cycles

For distribution $p=(p_1,p_2,\ldots,p_n)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^n p_i\log\frac{1}{p_i}$

For distribution $p=(p_1,p_2,\ldots,p_n)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^n p_i\log\frac{1}{p_i}$

Uniform distributions have high entropy

For distribution $p = (p_1, p_2, \dots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

For distribution $p=(p_1,p_2,\ldots,p_n)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^n p_i\log\frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

We want the cycle distributions to be concentrated

For distribution $p=(p_1,p_2,\ldots,p_n)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^n p_i\log\frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

We want the cycle distributions to be concentrated

For distribution $p=(p_1,p_2,\ldots,p_n)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^n p_i\log\frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

EC (Entropy Constrained)-PEG Algorithm For each VN v_i

Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_i

- select a CN with min degree not connected to v_j
- Else New cycles created

We want the cycle distributions to be concentrated

For distribution $p=(p_1,p_2,\ldots,p_n)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^n p_i\log\frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

EC (Entropy Constrained)-PEG Algorithm For each VN v_i

Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_i

• select a CN with min degree not connected to v_j

Else New cycles created

ullet Find CNs most distant to v_j

We want the cycle distributions to be concentrated

For distribution $p = (p_1, p_2, \dots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

EC (Entropy Constrained)-PEG Algorithm For each VN v_i

Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_i

• select a CN with min degree not connected to v_i

Else New cycles created

- ullet Find CNs most distant to v_j
- Select CN that results in minimum entropy of resultant cycle distribution

We want the cycle distributions to be concentrated

For distribution $p = (p_1, p_2, \dots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

EC (Entropy Constrained)-PEG Algorithm For each VN v_i

Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_i

• select a CN with min degree not connected to v_i

Else New cycles created

- Find CNs most distant to v_j
- Select CN that results in minimum entropy of resultant cycle distribution
- Update cycle distribution

We want the cycle distributions to be concentrated

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs
$$(v_1, v_2, \ldots, v_n)$$

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs
$$(v_1, v_2, \ldots, v_n)$$

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs
$$(v_1, v_2, \ldots, v_n)$$

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs (v_1, v_2, \ldots, v_n)

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs (v_1, v_2, \ldots, v_n)

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs (v_1, v_2, \ldots, v_n)

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs
$$(v_1, v_2, \ldots, v_n)$$

$$\lambda_1^{(6)} = \lambda_1^{(6)} + 1$$

$$\lambda_2^{(6)} = \lambda_2^{(6)} + 1$$

$$\lambda_6^{(6)} = \lambda_6^{(6)} + 1$$

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs (v_1, v_2, \ldots, v_n)

$$\lambda_1^{(6)} = \lambda_1^{(6)} + 1$$

$$\lambda_2^{(6)} = \lambda_2^{(6)} + 1$$

$$\lambda_7^{(6)} = \lambda_7^{(6)} + 1$$

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs
$$(v_1, v_2, \ldots, v_n)$$

$$\lambda_1^{(6)} = \lambda_1^{(6)} + 1$$

$$\lambda_3^{(6)} = \lambda_3^{(6)} + 1$$

$$\lambda_6^{(6)} = \lambda_6^{(6)} + 1$$

EC-PEG Algorithm: CN Selection Procedure

Candidate CNs : c_8 , c_9 , c_{10}

For each CN candidate, calculate the resultant VN cycle counts

$$\underbrace{(\lambda_1^{(g)},\dots,\lambda_n^{(g)})}_{\text{cycle counts}}$$

$$\underbrace{(\lambda_1^{(g)},\dots,\lambda_n^{(g)})}_{\text{cycle counts}} \to \underbrace{(\frac{\lambda_1^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}},\dots,\frac{\lambda_n^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}})}_{\text{normalized counts}} := \alpha^{(g)}$$

$$\underbrace{(\lambda_1^{(g)},\dots,\lambda_n^{(g)})}_{\text{cycle counts}} \to \underbrace{(\frac{\lambda_1^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}},\dots,\frac{\lambda_n^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}}) := \alpha^{(g)}}_{\text{normalized counts}} \to \underbrace{\mathcal{H}(\frac{\alpha^{(4)}+\alpha^{(6)}+\alpha^{(8)}}{3})}_{\text{entropy of combined counts}}$$

$$\underbrace{(\lambda_1^{(g)},\dots,\lambda_n^{(g)})}_{\text{cycle counts}} \to \underbrace{(\frac{\lambda_1^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}},\dots,\frac{\lambda_n^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}})}_{\text{normalized counts}} := \alpha^{(g)} \\ \to \underbrace{\mathcal{H}(\frac{\alpha^{(4)}+\alpha^{(6)}+\alpha^{(8)}}{3})}_{\text{entropy of combined counts}}$$

$$\underbrace{(\lambda_1^{(g)},\dots,\lambda_n^{(g)})}_{\text{cycle counts}} \to \underbrace{(\frac{\lambda_1^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}},\dots,\frac{\lambda_n^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}})}_{\text{normalized counts}} := \alpha^{(g)} \\ \to \underbrace{\mathcal{H}(\frac{\alpha^{(4)}+\alpha^{(6)}+\alpha^{(8)}}{3})}_{\text{entropy of combined counts}}$$

$$\underbrace{(\lambda_1^{(g)},\dots,\lambda_n^{(g)})}_{\text{cycle counts}} \to \underbrace{(\frac{\lambda_1^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}},\dots,\frac{\lambda_n^{(g)}}{\sum_{i=1}^n \lambda_i^{(g)}})}_{\text{normalized counts}} := \alpha^{(g)} \\ \to \underbrace{\mathcal{H}(\frac{\alpha^{(4)}+\alpha^{(6)}+\alpha^{(8)}}{3})}_{\text{entropy of combined counts}}$$

CN selection procedure:

CN selection procedure:

Select CN that results in minimum $\mathcal{H}(\frac{\alpha^{(4)}+\alpha^{(6)}+\alpha^{(8)}}{3})$

CN selection procedure: Select CN that results in minimum $\mathcal{H}(\frac{\alpha^{(4)}+\alpha^{(6)}+\alpha^{(8)}}{3})$

Note:

 Minimizing the entropy of joint cycle counts ensures that all cycle distributions are concentrated towards the same set of VNs

Sampling Strategy

 Our sampling strategy greedily samples VNs that are part of a large number of cycles

g= smallest cycle length in Tanner Graph ${\mathcal G}$ While sample set size < s

- v = VN that is part of largest no. of cycles of length g in \mathcal{G}
- ullet sample set = sample set $\cup v$
- ullet remove v and all incident edges from ${\cal G}$

Sampling Strategy

 Our sampling strategy greedily samples VNs that are part of a large number of cycles

g= smallest cycle length in Tanner Graph ${\mathcal G}$ While sample set size < s

- $\bullet\ v = {\sf VN}$ that is part of largest no. of cycles of length g in ${\cal G}$
- ullet sample set = sample set $\cup v$
- ullet remove v and all incident edges from $\mathcal G$ If \nexists cycles of length g in $\mathcal G$
 - g = g + 2

▶ Code parameters: Code length = 100, VN degree = 4, Rate = $\frac{1}{2}$, girth = 6.

▶ Code parameters: Code length = 100, VN degree = 4, Rate = $\frac{1}{2}$, girth = 6.

▶ VN indices arranged in decreasing order of cycle 6 fractions

▶ Code parameters: Code length = 100, VN degree = 4, Rate = $\frac{1}{2}$, girth = 6.

- ▶ VN indices arranged in decreasing order of cycle 6 fractions
- Cycle 6 and cycle 8 concentrated towards same set of VNs

Fraction of SSs of size 11, 12 touched by different VNs

Fraction of SSs of size 11, 12 touched by different VNs

▶ VN indices arranged in decreasing order of cycle 6 fractions

Fraction of SSs of size 11, 12 touched by different VNs

► VN indices arranged in decreasing order of cycle 6 fractions

Fraction of SSs of size 11, 12 touched by different VNs

- ► VN indices arranged in decreasing order of cycle 6 fractions
- ► SSs are concentrated towards the same set of VNs as the cycles

Probability of failure for a stopping set of size $\boldsymbol{\mu}$

Probability of failure for a stopping set of size $\boldsymbol{\mu}$

RS: Random Sampling

Probability of failure for a stopping set of size $\boldsymbol{\mu}$

RS: Random Sampling

Probability of failure for a stopping set of size $\boldsymbol{\mu}$

RS: Random Sampling GS: Greedy Sampling

Probability of failure for a stopping set of size $\boldsymbol{\mu}$

RS: Random Sampling GS: Greedy Sampling

Probability of failure for a stopping set of size $\boldsymbol{\mu}$

RS: Random Sampling GS: Greedy Sampling

 Concentrated LDPC codes with Greedy sampling improve the probability of failure

Probability of failure for a stopping set of size $\boldsymbol{\mu}$

RS: Random Sampling GS: Greedy Sampling

- Concentrated LDPC codes with Greedy sampling improve the probability of failure
 - □ Note that the probability of failure depends on the fraction of stopping sets touched (by greedy sampling) and not the actual number.

Incorrect Coding Proof Size

Depends on the maximum check node degree

Rate	Code length	VN degree	Ensemble [Yu '19]	PEG	EC-PEG
$\frac{1}{2}$	100	4	16	9	11
	200	4	16	9	15
$\frac{1}{4}$	100	4	8	7	10
	200	4	8	6	9

Table: Maximum CN degree for different codes.

Incorrect Coding Proof Size

Depends on the maximum check node degree

Rate	Code length	VN degree	Ensemble [Yu '19]	PEG	EC-PEG
$\frac{1}{2}$	100	4	16	9	11
	200	4	16	9	15
$\frac{1}{4}$	100	4	8	7	10
	200	4	8	6	9

Table: Maximum CN degree for different codes.

 Concentrated LDPC codes do not sacrifice on the incorrect coding proof size

- ► Summary:
 - We provided a specialized code construction technique to concentrate stopping sets in LDPC codes

- Summary:
 - We provided a specialized code construction technique to concentrate stopping sets in LDPC codes
 - Coupled with a greedy sampling strategy, concentrated LDPC codes reduce the probability of light node failure compared to earlier approaches

- Summary:
 - We provided a specialized code construction technique to concentrate stopping sets in LDPC codes
 - Coupled with a greedy sampling strategy, concentrated LDPC codes reduce the probability of light node failure compared to earlier approaches
- Extensions (Mitra '21):
 - Considered stronger adversary models that can selectively pick a stopping set that has a lower probability of being sampled to hide instead of randomly

- Summary:
 - We provided a specialized code construction technique to concentrate stopping sets in LDPC codes
 - Coupled with a greedy sampling strategy, concentrated LDPC codes reduce the probability of light node failure compared to earlier approaches
- Extensions (Mitra '21):
 - Considered stronger adversary models that can selectively pick a stopping set that has a lower probability of being sampled to hide instead of randomly
 - Provided optimal sampling strategies and associated coupled LDPC code construction to improve the security against such strong adversaries for a given sample complexity

References

- (Mitra '20) D. Mitra, L. Tauz, and L. Dolecek, "Concentrated Stopping Set Design for Coded Merkle Tree: Improving Security Against Data Availability Attacks in Blockchain Systems", in Proc. of IEEE Information Theory Workshop (ITW), 2020.
- (Mitra '21) D. Mitra, L. Tauz, and L. Dolecek, "Overcoming Data Availability Attacks in Blockchain Systems: LDPC Code Design for Coded Merkle Tree", 2021, submitted to *IEEE Transactions on Communications*. (available at: https://arxiv.org/abs/2108.13332)
- ▶ (Al-Bassam '18) M. Al-Bassam, et al., "Fraud and data availability proofs: Detecting invalid blocks in light clients," *International Conference on Financial Cryptography and Data Security, Springer, Cham*, 2021.
- ▶ (Yu '19) M. Yu, et al., "Coded Merkle Tree: Solving Data Availability Attacks in Blockchains," International Conference on Financial Cryptography and Data Security, Springer, Cham, 2020.

References

- (Wang ' 19) X. Wang, et al., "Survey on blockchain for internet of things," Computer Communications, vol. 136, pp. 10-29, 2019.
- ▶ (Daian '19) P. Daian, et al., "Snow white: Robustly reconfigurable consensus and applications to provably secure proof of stake," Financial Cryptography, 2019.
- (Xiao '05) X.Y. Hu, et al., "Regular and irregular progressive edge-growth tanner graphs," IEEE Transactions of Information Theory, vol. 51, no. 1, 2005.
- ► (Tian '03) T. Tian, et al., "Construction of irregular LDPC codes with low error floors," in Proc. IEEE International Conference on Communications, 2003.