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Blockchain Background

Blockchain

» Institutional Trust Systems
e All parties trust an established institution
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e Multiple parties collaborate on a specific f
task without parties trusting one another comnbase .
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[J Blockchain: Allows for decentralized trust systems
e Main application of Blockchain: Currency and Finance
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» Incorrect coding attack:
Adversary sends incorrectly coded block to Full Nodes
Honest Full nodes can detect and send incorrect coding proof

Incorrect coding proof size: O(sparsity of parity check equations)
MDS codes: proof size = O(block size)

» Decoding complexity
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» Characterized by a sparse parity check matrix

circles: variable nodes (VNs)
squares: check nodes (CNs)
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LDPC codes:

» Characterized by a sparse parity check matrix

» Tanner Graph \
circles: variable nodes (VNs)
squares: check nodes (CNs)

4o
LDPC codes have been shown to be suitable for this application [Yu' 19]
» Small incorrect coding proof size due to small check node degree
» Linear decoding in terms of the block size using peeling decoder

e What about the undecodable ratio?
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» Substructure in the Tanner Graph

» If hidden, prevents peeling decoder from
decoding the block — No fraud proof

[ITTTTTTITTITTITTIT]
JLDPCCode
TTTTI T OO T T T T T T T T T T 1]

bl | _3 _ 3\
Small stopping set hidden ! 32 ! 31/ 0-81

Probability of failure
using 2 random samples:

Our work: Design of specialized LDPC codes with a coupled sampling

strategy to achieve a significantly lower probability of failure.
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LDPC Code Design

How to Concentrate Stopping Sets?

» When there are no degree 1 VNs, stopping sets are either cycles or
interconnection of cycles [Tian '03]
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LDPC Code Design

How to Concentrate Stopping Sets?

» When there are no degree 1 VNs, stopping sets are either cycles or
interconnection of cycles [Tian '03]

» Concentrating cycles = Concentrating stopping sets
L Directly concentrating stopping sets during code construction incurs huge

complexity

e How to design codes with concentrated cycles?
We do so by modifying the well-known Progressive Edge Growth
(PEG) algorithm

Mitra, Tauz, Dolecek (UCLA) NVMW 2022 14 /27



PEG Algorithm

» Constructs a Tanner Graph in an
edge by edge manner [Xiao '05]
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PEG Algorithm

Depth-0

Depth-1

Depth-£

Mitra, Tauz, Dolecek (UCLA)

» Constructs a Tanner Graph in an
edge by edge manner [Xiao '05]

For each VN v;
Expand Tanner Graph in a BFS fashion
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PEG Algorithm

Vj

No new CNs

ooo-0O

CNs not connected to v;

Mitra, Tauz, Dolecek (UCLA)

» Constructs a Tanner Graph in an
edge by edge manner [Xiao '05]

For each VN v;
Expand Tanner Graph in a BFS fashion
If 3 CNs not connected to v;
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PEG Algorithm

Vj

CNs not connected to v;

Mitra, Tauz, Dolecek (UCLA)

» Constructs a Tanner Graph in an
edge by edge manner [Xiao '05]

For each VN v;
Expand Tanner Graph in a BFS fashion
If 3 CNs not connected to v;
e Select a CN with min degree not
connected to v;
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PEG Algorithm

Vi

» Constructs a Tanner Graph in an
edge by edge manner [Xiao '05]

For each VN v;
Expand Tanner Graph in a BFS fashion
If 3 CNs not connected to v;
e Select a CN with min degree not
; connected to v;
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PEG Algorithm

Vi

» Constructs a Tanner Graph in an
edge by edge manner [Xiao '05]

For each VN v;
Expand Tanner Graph in a BFS fashion
If 3 CNs not connected to v;
e Select a CN with min degree not
connected to v;
Else
e Find CNs most distant to v;
e Select one with minimum degree
New cycles created

All CNs exhausted

[We modify the CN selection criteria in green to concentrate cycles ]
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Using Entropy to Concentrate Cycles

For distribution p = (p1,p2, ..., pn), Entropy H(p) = >, p;ilog pli
» Uniform distributions have high entropy
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Using Entropy to Concentrate Cycles

For distribution p = (p1, p2,...,pn), Entropy H(p) = > ", pilog z%-
» Uniform distributions have high entropy
» Concentrated distributions have low entropy

EC (Entropy Constrained)-PEG Algorithm
For each VN v;
Expand Tanner Graph in a BFS fashion

If 3 CNs not connected to v;
e select a CN with min degree not
connected to v;
Else New cycles created

PiP2 Pn PiP2 Pn

High Entropy Low Entropy
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Using Entropy to Concentrate Cycles

For distribution p = (p1, p2,...,pn), Entropy H(p) = > ", pilog z%-
» Uniform distributions have high entropy
» Concentrated distributions have low entropy

EC (Entropy Constrained)-PEG Algorithm
For each VN v;
Expand Tanner Graph in a BFS fashion

If 3 CNs not connected to v;
e select a CN with min degree not
connected to v;
Else New cycles created

pip2 P PiP2 Tn e Find CNs most distant to v;
High Entropy Low Entropy e Select CN that results in minimum
entropy of resultant cycle distribution
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LDPC Code Design

Using Entropy to Concentrate Cycles

For distribution p = (p1, p2,...,pn), Entropy H(p) = > ", pilog z%-
» Uniform distributions have high entropy
» Concentrated distributions have low entropy

EC (Entropy Constrained)-PEG Algorithm
For each VN v;
Expand Tanner Graph in a BFS fashion

If 3 CNs not connected to v;
e select a CN with min degree not
connected to v;
Else New cycles created

PiP: P PiPz b e Find CNs most distant to v;
High Entropy Low Entropy e Select CN that results in minimum
entropy of resultant cycle distribution
e Update cycle distribution

We want the cycle distributions to be concentrated
— Select CNs such that the entropy of the cycle distribution is minimized

Mitra, Tauz, Dolecek (UCLA) NVMW 2022 16 /27



EC-PEG Algorithm

> Whenever a new edge, that creates cycles, is added to the Tanner
Graph, we update the cycle counts of each VN
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> Whenever a new edge, that creates cycles, is added to the Tanner
Graph, we update the cycle counts of each VN

VNs (1}1,1}2, PN ,Un)
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EC-PEG Algorithm

> Whenever a new edge, that creates cycles, is added to the Tanner
Graph, we update the cycle counts of each VN

VNs (Ul,vg, ey Un)

> )\Eg) := No. of cycles of length g
that v; is a part of, g = 4,6,8

>
AY =\ 41
A =AY 41
AP = A 41

NVMW 2022 17 /27
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EC-PEG Algorithm

> Whenever a new edge, that creates cycles, is added to the Tanner
Graph, we update the cycle counts of each VN

Vi

VNs (Ul, V2, ..., Un)
> )\Eg) := No. of cycles of length g
that v; is a part of, g = 4,6,8
| 2

V) V4O Ovs

************************ AD — A0 g
A =AY 41
C16~ Cg C9 Cig Cg Ci0 )‘gﬁ) = )‘$6) +1

________________________________

Mitra, Tauz, Dolecek (UCLA) NVMW 2022

17 /27



EC-PEG Algorithm

> Whenever a new edge, that creates cycles, is added to the Tanner
Graph, we update the cycle counts of each VN

VNs (Ul,vg, ey Un)

> )\Eg) := No. of cycles of length g
that v; is a part of, g = 4,6,8

>
AY =\ 41
AP =AY 41
AP = A 41

Mitra, Tauz, Dolecek (UCLA) NVMW 2022 17 /27



LDPC Code Design

EC-PEG Algorithm: CN Selection Procedure
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Candidate CNs : cg, cg, cio
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» For each CN candidate, calculate the
resultant VN cycle counts
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EC-PEG Algorithm: CN Selection Procedure

Candidate CNs : cg, c9, c10

» For each CN candidate, calculate the
resultant VN cycle counts

> W AW, A9 A, P A

> ol S, (A A, (A A

> A A, A0 A, D)
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EC-PEG Algorithm: CN Selection Procedure
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LDPC Code Design

EC-PEG Algorithm: CN Selection Procedure

(9) (9)
OO, A0y N
cycle counts E’=1 v 1=1""

)= al9)

normalized counts
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LDPC Code Design

EC-PEG Algorithm: CN Selection Procedure

)\(9) )\%g)

(9) (9)
()‘1 7"'7)‘77, ) - (Zn_lA(g)r”a Z’.L_l)\(.g)

cycle counts

normalized counts

Mitra, Tauz, Dolecek (UCLA)

)= a9 — H(

a(4) + a(ﬁ) + a(8)
3

entropy of combined counts
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EC-PEG Algorithm: CN Selection Procedure

4 4 6 6 8 8 a®) 4+4(6) 4o (8)
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> OO, AP, (Y, D) (e e e

2@ AW a@® 1+ a6 L o®

3

entropy of combined counts

(9) (9)
()\1 77)\77,)_)( " )\(g),..., " )\(g
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normalized counts
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LDPC Code Design

EC-PEG Algorithm: CN Selection Procedure

4 5 5 a® 1o (6) 4 o (8)
A ), AR (e e

P OO AW, 0O D), A A gy(ealDra®y

3

4 4 5 6 8 8 a®) 10(6) 4o (8)

CN selection procedure:
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EC-PEG Algorithm: CN Selection Procedure

4 5 5 a® 1o (6) 4 o (8)
A ), AR (e e

P oW W), O A9, AP A (el e ®)

3

4 4 ; 6 8 s 0@ 4 a(® 4o

CN selection procedure:
a(4) +a(6) +a(8)
B

Select CN that results in minimum H(
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EC-PEG Algorithm: CN Selection Procedure

> ), 8, O ) (e e e

[ 8 8

D N O D Y B ¥ R

4 » ‘ 8 a®1al® 1 o®
> OO, AP, (Y, D) (e e e

CN selection procedure:

Select CN that results in minimum H(M)

Note:

» Minimizing the entropy of joint cycle counts ensures that all cycle
distributions are concentrated towards the same set of VNs
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Sampling Strategy

» Qur sampling strategy greedily samples VNs that are part of a large
number of cycles

g = smallest cycle length in Tanner Graph G
While sample set size < s
e v = VN that is part of largest no. of
cycles of length g in G
e sample set = sample set U v
e remove v and all incident edges from G

Fraction of cycles gpip touched

HHHIHH.

VisVz V3 Vg .o
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Sampling Strategy

» Qur sampling strategy greedily samples VNs that are part of a large
number of cycles

g = smallest cycle length in Tanner Graph G
While sample set size < s

e v = VN that is part of largest no. of

cycles of length g in G
e sample set = sample set U v
e remove v and all incident edges from G
‘ ‘ N I 3 If 3 cycles of length g in G

Ll eg=g+2

Fraction of cycles gpip touched
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LDPC Code Design

Simulation Results

» Code parameters: Code length = 100, VN degree = 4, Rate = %
girth = 6.
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Simulation Results

» Code parameters: Code length = 100, VN degree = 4, Rate = %
girth = 6.
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\ — cycle 6 Original PEG
——cycle 6 EC-PEG
-- cycle 8 Original PEG
.- cycle SEC-PEG

0.05

Fraction of cycles touched
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VN index

» VN indices arranged in decreasing order of cycle 6 fractions
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LDPC Code Design

Simulation Results

» Code parameters: Code length = 100, VN degree = 4, Rate = %
girth = 6.

<
=
X

\ — cycle 6 Original PEG

1 ——cycle 6EC-PEG

\ -~ cycle 8 Original PEG
.- cycle SEC-PEG

<
o
oy

o
(e
X

o
S
vl

Fraction of cycles touched

5
<3
It

0 20 40 60 80 100
VN index
» VN indices arranged in decreasing order of cycle 6 fractions

» Cycle 6 and cycle 8 concentrated towards same set of VNs
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Simulation Results

Fraction of SSs of size 11, 12 touched by different VNs
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Simulation Results

Fraction of SSs of size 11, 12 touched by different VNs
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» VN indices arranged in decreasing order of cycle 6 fractions
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Simulation Results

Fraction of SSs of size 11, 12 touched by different VNs
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LDPC Code Design

Simulation Results

Fraction of SSs of size 11, 12 touched by different VNs

SSs of size 11 SSs of size 12

0.25 i 0.25 i —
3 — Original PEG 3 — Original PEG
£ 02, - EC-PEG 2 02y ~— EC-PEG
3 . 3
o 0.15 ekl | 5 0.15
v 0 i
n T n I
w 017 I i % 0l
5 5
2005 20.05
(9] [S)
o o]
= 0 = 0 [

0 20 40 60 80 100 0 20 40 60 80 100
VN index VN index

» VN indices arranged in decreasing order of cycle 6 fractions

» SSs are concentrated towards the same set of VNs as the cycles
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LDPC Code Design

Simulation Results
Probability of failure for a stopping set of size
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Simulation Results

Probability of failure for a stopping set of size RS: Random Sampling
1 . .
x ~~» - Ensemble + RS p = 6 [Yu ‘19]
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No of Samples s
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Simulation Results

Probability of failure for a stopping set of size RS: Random Sampling
1 : ‘
~~» - Ensemble + RS 11 = 6 [Yu ‘19]
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LDPC Code Design

Simulation Results

Probability of failure for a stopping set of size RS: Random Sampling
GS: Greedy Sampling

1 T
-~ »- Ensemble + RS = 6 [Yu '19]
o EC-PEG + RS p = 10
~ = EC-PEG + RS p =11
0.8 4 EC-PEG + RS i = 12
[0} -~ -~ Original PEG + GS p1 =10
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LDPC Code Design

Simulation Results

Probability of failure for a stopping set of size RS: Random Sampling
GS: Greedy Sampling

1 - - !
N -~»- Ensemble + RSy = 6 [Yu '19]
o EC-PEG + RS p1 =10
= BEC-PEG + RS u =11
~ -4 EC-PEG + RS =12
~~e-- Original PEG + GS p =10
—=— Original PEG + GS p =11
--a-- Original PEG + GS p =12
e~ EC-PEG + GS =10
" —+EC-PEG + GS p =11
\\ --4-- BC-PEG + GS =12

o
%

0.6

Prob. of failure

0471
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LDPC Code Design

Simulation Results

Probability of failure for a stopping set of size u

o
%

~~»- Ensemble + RS 1 = 6 [Yu '19]
o EC-PEG +RSpu=10
= EC-PEG + RS y = 11
4~ EC-PEG + RS p = 12
- Original PEG + GS 4 = 10

o
5 +Ongm'xl PEG + GS p =11
= 06 -~ Original PEG + GS = 12
& v o~ EC-PEG + GS =
e —a—EC-PEG + GS pu = 11
o a-- EC-PEG + GS u =
. 04}
o)
o .
— >
[a T
02 I ‘\\‘“
"“b;
T T,
0 : i S S G os 3 32 T TS
0 10 20 30 40

No of Samples s

RS: Random Sampling
GS: Greedy Sampling

» Concentrated LDPC codes with Greedy sampling improve the

probability of failure
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LDPC Code Design

Simulation Results

Probability of failure for a stopping set of size u

Prob. of failure

RS: Random Sampling
GS: Greedy Sampling

o
%

o
=N

=
~

o
o

~—»—- Ensemble + RS y1 = 6 [Yu '19]
o EC-PEG + RS yi =10
EC-PEG + RS p = 11
4~ EC-PEG + RS p =12
--e-- Original PEG + GS p = 10
——a— Original PEG + GS p = 11
-~ Original PEG + GS =12
o~ EC-PEG + GS p =10
—a—EC-PEG + GS pu = 11
--a-- EC-PEG + GS = 12

AT ‘b\”*;,‘

&N —e-, A.:-..‘ -
N e s T VD

20 30

No of Samples s

40

» Concentrated LDPC codes with Greedy sampling improve the

probability of failure

L Note that the probability of failure depends on the fraction of stopping
sets touched (by greedy sampling) and not the actual number.
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LDPC Code Design

Incorrect Coding Proof Size

» Depends on the maximum check node degree

Rate | Code length | VN degree | Ensemble [Yu '19] PEG EC-PEG
1 100 4 16 9 11
2 200 4 16 9 15
1 100 4 8 7 10
1 200 4 8 6 9

Table: Maximum CN degree for different codes.
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LDPC Code Design

Incorrect Coding Proof Size

» Depends on the maximum check node degree

Rate | Code length | VN degree | Ensemble [Yu '19] PEG EC-PEG
1 100 4 16 9 11
2 200 4 16 9 15
1 100 4 8 7 10
1 200 4 8 6 9

Table: Maximum CN degree for different codes.

» Concentrated LDPC codes do not sacrifice on the incorrect coding
proof size

Mitra, Tauz, Dolecek (UCLA)

NVMW 2022 24 /27



Conclusion

Conclusion and Extentions

> Summary:

e We provided a specialized code construction technique to concentrate
stopping sets in LDPC codes

Mitra, Tauz, Dolecek (UCLA)



Conclusion

Conclusion and Extentions

> Summary:

e We provided a specialized code construction technique to concentrate
stopping sets in LDPC codes

e Coupled with a greedy sampling strategy, concentrated LDPC codes

reduce the probability of light node failure compared to earlier
approaches

Mitra, Tauz, Dolecek (UCLA) NVMW 2022 25/27



Conclusion

Conclusion and Extentions

> Summary:

e We provided a specialized code construction technique to concentrate
stopping sets in LDPC codes

e Coupled with a greedy sampling strategy, concentrated LDPC codes
reduce the probability of light node failure compared to earlier
approaches

» Extensions (Mitra '21):

e Considered stronger adversary models that can selectively pick a

stopping set that has a lower probability of being sampled to hide
instead of randomly
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Conclusion

Conclusion and Extentions

> Summary:

e We provided a specialized code construction technique to concentrate
stopping sets in LDPC codes
e Coupled with a greedy sampling strategy, concentrated LDPC codes
reduce the probability of light node failure compared to earlier
approaches
» Extensions (Mitra '21):

e Considered stronger adversary models that can selectively pick a
stopping set that has a lower probability of being sampled to hide
instead of randomly

e Provided optimal sampling strategies and associated coupled LDPC
code construction to improve the security against such strong
adversaries for a given sample complexity

Mitra, Tauz, Dolecek (UCLA) NVMW 2022 25 /27



Conclusion

References

» (Mitra '20) D. Mitra, L. Tauz, and L. Dolecek, “Concentrated Stopping Set
Design for Coded Merkle Tree: Improving Security Against Data Availability
Attacks in Blockchain Systems”, in Proc. of IEEE Information Theory Workshop
(ITW), 2020.

» (Mitra '21) D. Mitra, L. Tauz, and L. Dolecek, “Overcoming Data Availability
Attacks in Blockchain Systems: LDPC Code Design for Coded Merkle Tree",

2021, submitted to IEEE Transactions on Communications.
(available at: https://arxiv.org/abs/2108.13332)

> (Al-Bassam '18) M. Al-Bassam, et al., “Fraud and data availability proofs:
Detecting invalid blocks in light clients,” International Conference on Financial
Cryptography and Data Security, Springer, Cham, 2021.

> (Yu '19) M. Yu, et al., “Coded Merkle Tree: Solving Data Availability Attacks in
Blockchains,” International Conference on Financial Cryptography and Data
Security, Springer, Cham, 2020.

Mitra, Tauz, Dolecek (UCLA) NVMW 2022 26 /27



Conclusion

References

> (Wang ' 19) X. Wang, et al., “Survey on blockchain for internet of things,”
Computer Commununications, vol. 136, pp. 10-29, 2019.

» (Daian '19) P. Daian, et al., “Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake,” Financial Cryptography, 2019.

> (Xiao '05) X.Y. Hu, et al., “Regular and irregular progressive edge-growth tanner
graphs,” IEEE Transactions of Information Theory, vol. 51, no. 1, 2005.

» (Tian '03) T. Tian, et al., “Construction of irregular LDPC codes with low error
floors,” in Proc. IEEE International Conference on Communications, 2003.

Mitra, Tauz, Dolecek (UCLA) NVMW 2022 27 /27



	Blockchain Background
	Data Availability Attacks
	LDPC Code Design
	Conclusion

