
Concentrated Stopping Set Design for
Coded Merkle Tree: Improving Security Against
Data Availability Attacks in Blockchain Systems

Debarnab Mitra, Lev Tauz and Lara Dolecek
Department of Electrical and Computer Engineering, University of California, Los Angeles, USA

email: debarnabucla@ucla.edu, levtauz@ucla.edu, dolecek@ee.ucla.edu
Abstract—In certain blockchain systems, light nodes are clients

that download only a small portion of the block. Light nodes are
vulnerable to a data availability (DA) attack where a malicious
node makes the light nodes accept an invalid block by hiding
the invalid portion of the block from the nodes in the system. A
technique based on LDPC codes called Coded Merkle Tree (CMT),
proposed by Yu et al., enables light nodes to detect a DA attack
by randomly requesting/sampling portions of the block from the
malicious node. However, light nodes fail to detect a DA attack
with high probability if a malicious node hides a small stopping
set of the LDPC code. To improve the probability of detection,
in this work, we demonstrate a specialized LDPC code design
that focuses on concentrating stopping sets to a small group of
variable nodes rather than only eliminating stopping sets. Our
design demonstrates a higher probability of detecting DA attacks
compared to prior work thus improving the security of the system.

I. INTRODUCTION
A blockchain is an immutable ledger of transaction blocks

stored in a distributed manner among its users (nodes). Full
nodes in a blockchain system store the entire ledger in their
memory and operate on it to validate transactions. Modern
non-volatile memory technologies such as persistent memories
can improve blockchain performance due to their low latency
(allowing faster validation) and high reliability, e.g. [1].

Due to the excessive storage and compute requirements
of running full nodes [2], blockchain systems also run Light
nodes: they only store the header corresponding to each block.
Light nodes cannot verify transactions and rely on full nodes
for fraud notifications. Blockchain systems with a majority of
malicious full nodes are susceptible to data availability (DA)
attacks [2], [3]. In this attack, a malicious full node generates
a block with invalid transactions and hides the invalid portion
making the honest full nodes unable to validate the block
and notify the light nodes of the malicious behaviour. Light
nodes can detect a DA attack by randomly sampling a few
chunks of the block from the malicious node (who generated
the block) and reject the block if all the requested chunks are
not returned. To improve the probability of detection, the block
is encoded using an erasure code [2]. However, coding allows
the malicious node to carry out an incorrect-coding attack [2],
[3] in which case the full nodes send an incorrect-coding proof
to the light nodes to reject the block. The size of this proof
is proportional to the sparsity of the parity check equations
and to keep the storage size at the light nodes small, authors
in [3] proposed to use a Low-Density Parity-Check (LDPC)
code to encode the block. The coded block is decoded by a
peeling decoder which fails if the malicious node hides coded
symbols corresponding to a stopping set [3] of the LDPC
code. Since the malicious node can hide the smallest stopping
set, the best code design strategy to reduce the probability of

The authors acknowledge the Guru Krupa Foundation and NSF-BSF grant
no. 2008728 to conduct this research work.

Fig. 1: System Model: A malicious node generates a coded block with n coded
symbols using an LDPC code with a binary parity check matrix H (having VNs
V = {v1, . . . , vn}). A DA attack occurs when a malicious node generates an
invalid block and hides coded symbols corresponding to a stopping set of H
such that honest full nodes are unable to decode the block fully using a peeling
decoder [3]. Light nodes detect a DA attack by sampling coded symbols.

failure using random sampling is to construct LDPC codes
that have large minimum stopping set size. Constructing such
LDPC codes is a known hard problem [4]. In this work, we
show that the probability of failure can be reduced by an
efficient co-design of specialized LDPC codes and the light
node sampling strategy. The main contribution of the work is
an LDPC code construction called the entropy-constrained PEG
(EC-PEG) algorithm that concentrates stopping sets to a small
set of variable nodes (VNs) and a greedy sampling strategy that
samples a large number of stopping sets. We show that our new
co-design results in a lower probability of failure compared to
prior techniques. All details can be found in [5] and [6].

II. SYSTEM MODEL
Our system model is shown in Fig. 1. The goal for the

light nodes is to detect a DA attack and reject the unavailable
block. To accomplish this goal, light nodes sample coded
symbols from the malicious node and accept the block if all the
requested symbols are returned. A light node fails to detect a
DA attack if the samples requested are not hidden. Let pf (s, ω)
be the probability of failure for some sampling strategy with
s samples when the malicious node hides a stopping set of H
with ω VNs. In this work, we provide construction of H and a
coupled sampling strategy to reduce pf (s, ω) compared to prior
work. In [3], random sampling with replacement is employed
and pf (s, ω) = (1 − ωmin

n)s, where ωmin is the size of the
smallest stopping set of H . In this work, we limit ourselves to
a malicious node that is unaware of the sampling strategy used
by the light nodes and for a given size of the stopping set ω,
it hides a randomly chosen stopping set of size ω. We provide
co-design techniques to handle stronger adversaries in [6].

III. DESIGN IDEA: STOPPING SET CONCENTRATION
A VN v touches a cycle (stopping set) of the LDPC code

iff v is part of the cycle (stopping set). Let G be the Tanner
Graph representation of H . A cycle of length g is a g-cycle. Let
ssω = (ssω1 , . . . , ss

ω
n) and ζg = (ζg1 , . . . , ζ

g
n) denote the VN-

to-stopping-set of weight ω and VN-to-g-cycle distributions,
respectively, where ssωi (ζgi) is the fraction of stopping sets

of weight ω (g-cycles) touched by vi. We informally say that
distribution ssω (ζg) is concentrated if a small set of VNs have
a high corresponding stopping set (g-cycle) fraction.
Lemma 1. Let SSω be the set of all weight ω stopping sets of
H . If the malicious node picks a stopping set randomly from
SSω and hides it, then probability of failure pf (s, ω) satisfies
pf (s, ω) ≥ 1 − maxS⊆V,|S|=s τ(S, ω), where τ(S, ω) is the
fraction of stopping sets of weight ω touched by the set of VNs
S. The lower bound in the above equation is achieved when
light nodes sample the set Sopt

ω = argmaxS⊆V,|S|=sτ(S, ω).
Lemma 1 suggests that the lowest probability of failure

is 1 − τ(Sopt
ω , ω). Now, τ(Sopt

ω , ω) is large if a majority of
stopping sets of weight ω are touched by a small subset of VNs,
which is achieved if the distributions ssω are concentrated.
Thus, designing LDPC codes with concentrated ssω increases
the value of τ(Sopt

ω , ω) and reduces the probability of failure.
Instead of finding Sopt

ω , in this work, we greedily find a set
Sgreedy of s VNs that touch the largest number of cycles start-
ing from gmin(the girth of the code)-cycles. Light nodes sample
VNs in Sgreedy and we have pf (s, ω) = 1− τ(Sgreedy, ω).

IV. ENTROPY-CONSTRAINED PEG ALGORITHM
In this section, we provide a method to concentrate stopping

sets. We do so by concentrating the cycle distributions ζg since
stopping sets are made up of cycles [7]. Our method utilizes
entropy as a measure of concentration. Since distributions that
are concentrated have low entropy, we construct LDPC codes
using the PEG algorithm [8] by making check node (CN) selec-
tions that minimize the entropy of the cycle distributions. The
full EC-PEG algorithm is provided below. It differs from the
original PEG algorithm [8] in steps 7-15. In the algorithm, we
maintain g′-cycle counts Λ

(g′)
i for each VN vi and g′ < gc. In

steps 7-13, for each candidate CN c, we find the updated cycle
counts (steps 8-10), normalize them (step 11) and calculate
the entropy of the averaged normalized cycle counts (step 13).
Then, we select the CN with the minimum Entropy[] (step 14).
Algorithm 1 EC-PEG Algorithm

1: Inputs: n, m , dv , gc, Outputs: G̃, gmin, Initialize G̃ to n
VNs, m CNs and no edges, T = |{4, 6, . . . , gc − 2}|

2: Initialize Λ
(g′)
i = 0, for all g′ < gc and 1 ≤ i ≤ n

3: for j = 1 to n do for k = 1 to dv do [K, g] = PEG(G̃, vj)
4: if g ≥ gc then
5: csel = “min degree CN selection” procedure
6: else ▷ (g-cycles, g < gc are created)
7: for each c in K do
8: λ

(g′,c)
i = Λ

(g′)
i , g′ < gc, 1 ≤ i ≤ n

9: L = new g-cycles in G̃ due to edge(c, vj)

10: for all v in G̃ do λ
(g,c)
v = λ

(g,c)
v + |{O ∈ L | v ∈ O}|

11: α
(g′)
i =

λ
(g′,c)
i∑n

i=1 λ
(g′,c)
i

, 1 ≤ i ≤ n, g′ < gc

12: αgc = (
∑

g′<gc

α
(g′)
1

T ,
∑

g′<gc

α
(g′)
2

T , . . . ,
∑

g′<gc

α(g′)
n

T)
13: Entropy[c] = H(αgc)

14: csel = argminc∈KEntropy[c], Λ
g
i = λ

(g,csel)
i ∀i,

15: G̃ = G̃ ∪ edge{csel, vj}
V. SIMULATION RESULTS

We show results for n = 128, rate = 0.5, VN degree
= 4, gc = 10 in Fig. 2 and 3. Fig. 2 shows the stopping
set distributions ssω for EC-PEG and PEG LDPC codes where

VN index

ss
1
3

VN index

ss
1
4

Fig. 2: Stopping set distributions ss13 (left panel) and ss14 (right panel);

s

p
f
(s
,ω

)

Fig. 3: pf (s, ω)
for various coding
schemes and sam-
pling strategies.
ω∗: minimum stop-
ping set size (w.h.p.)
for ensemble of [3].
GS: Greedy Sam-
pling RS: Random
Sampling

the VN indices are arranged in decreasing order of stopping
set fractions ssωi . Clearly, the EC-PEG algorithm results in
concentrated stopping sets since the VNs towards the left on the
x-axis have high stopping set fraction. In Fig. 3, the probability
of failure pf (s, ω) is shown. From the figure, we see that the
combination of the greedy sampling and concentrated LDPC
codes provided by the EC-PEG algorithm results in a lower
probability of failure compared to using random ensembles and
random sampling (black curve), as used in [3], as well as the
PEG algorithms with random sampling (green and red curves).

VI. CONCLUSION, EXTENSIONS AND FUTURE WORK
In this work, we proposed a novel design of LDPC codes

for application in blockchains with DA attacks and showed a
significant improvement in detecting DA attacks compared to
previous schemes. While we have considered an adversary that
is unaware of our new co-design, in our full paper [6] we also
consider a stronger adversary that does have this knowledge and
devise a novel extension of EC-PEG LDPC codes to handle this
case. As a future extension, we are currently investigating other
code families, such as Polar Codes, for combating DA attacks.

REFERENCES
[1] Z. E. Lee, et al., “Performance Evaluation of Big Data Processing at

the Edge for IoT-Blockchain Applications,” IEEE Global Commun. Conf.
(GLOBECOM), 2019.

[2] M. Al-Bassam, A. Sonnino, V. Buterin, “Fraud and data availability
proofs: Maximising light client security and scaling blockchains with
dishonest majorities,” arXiv preprint arXiv:1809.09044, Sept. 2018.

[3] M. Yu, et al., “Coded merkle tree: Solving data availability attacks in
blockchains,” Int. Conf. on Financial Cryptography and Data Secur.,
Springer, Cham, Feb. 2020.

[4] X. Jiao, et al., “Eliminating small stopping sets in irregular low-density
parity-check codes,” IEEE Commun. Lett., vol. 13, no. 6, Jun. 2009.

[5] D. Mitra, L. Tauz, and L. Dolecek, “Concentrated Stopping Set Design for
Coded Merkle Tree: Improving Security against Data Availability Attacks
in Blockchain Systems,” 2020 IEEE Inf. Theory Workshop (ITW), Apr.
2021.

[6] D. Mitra, L. Tauz, and L. Dolecek, “Overcoming Data Availability Attacks
in Blockchain Systems: LDPC Code Design for Coded Merkle Tree,” arXiv
preprint arXiv:2108.13332, Aug. 2021.

[7] T. Tian, et al., “Construction of irregular LDPC codes with low error
floors,” IEEE Int. Conf. on Commun., vol. 5, May 2003.

[8] X.Y. Hu, E. Eleftheriou and D.M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs,” IEEE Trans. on Inf. Theory, vol. 51,
no. 1, Jan. 2005.

