
PMNet: In-Network Data Persistence∗

Korakit Seemakhupt, Sihang Liu, Yasas Senevirathne, Muhammad Shahbaz†‡, and Samira Khan
University of Virginia †Stanford University ‡Purdue University

1 Introduction
Today, most of the computation takes place in hyper-scale
cloud data centers (e.g., Amazon AWS, Microsoft Azure, and
Google Cloud). These data centers host workloads ranging
from latency-sensitive interactive jobs [2] to long-running
workloads with large memory footprints [1, 6]. In most of
these workloads, data is persistently maintained in multiple
dedicated servers, with clients accessing and updating this
data remotely via network, using (synchronous) remote pro-
cedure calls (RPCs). During each invocation of an RPC, the
request is processed by the client’s IO stack, the network of
intermediate switches, the server’s IO stack as well as the
request handler on the server as illustrated in Figure 1. Thus,
the latency of an RPC is significantly affected by the process-
ing time of these stages. As the computation performed by
modern workloads is dominated by these RPCs, i.e., read and
update requests, the access latency of remote data is criti-
cal when deploying workloads on modern data centers [3].
Therefore, our goal is to improve the performance (specifi-
cally the tail latency) for synchronous RPCs by minimizing
the access time to remote persistent data.

2 Background
Recently, with programmable network devices becoming a
commodity [4], the trend is to offload application logic to
those devices. This way, a large fraction of the procedure,
including server’s network stack and processing time, is no
longer handled by the server but accelerated by those net-
work devices. This newer scheme is known as in-network
compute, spanning a wide range of applications, such as key-
value stores [10], data aggregation [5], and even computational-
intensive machine-learning tasks [11].
Though promising, in-network computing mainly miti-

gates the latency of computational tasks and requests that
do not change the server state (e.g., read queries); the data
persistence is still maintained by the servers, and update
requests still need to traverse the server’s entire network
and IO stack to complete the update. Therefore, as in the
original case, the client needs to wait for an entire round-trip
time (RTT)—for an acknowledgment from the server—before
it can proceed.

To minimize the server-side request processing time, data
centers are deploying new persistent memory (PM) technolo-
gies, such as Intel’s Optane. Compared to traditional storage
devices (e.g., SSD and HDD), PM provides high-speed and
∗Published as PMNet: In-Network Data Persistence, Proceedings of the 46th
International Symposium on Computer Architecture (ISCA), 2021.

Figure 1. Round-trip time (RTT) of a single request.

direct, byte-addressable access to persistent data, while by-
passing OS indirections (e.g., file systems). PM reduces the
server’s storage latency by 10∼50× [9], thereby enabling
software systems, such as key-value stores [8] to perform at
much faster speeds. Despite the faster server-side processing,
the network is still a dominant factor—causing clients to stall
for a complete RTT. Moreover, as the network is a shared
resource, the contention for bandwidth, switch queues, and
links can further lead to variable delays and long tail la-
tencies [3]. We identify that the fundamental limitations of
in-network computing are that switch-local operations are
stateless, being unable to accelerate a stateful, persistent op-
eration residing on the server. PMs in the server improve
the performance of persistent updates, but the network and
server network-stack latency are still on the critical path of
the request.

3 In-Network Data Persistence
We found that it is possible to expose the persistent state to
the network and persist update requests in-network. There-
fore, we introduce the notion of in-network data persistence,
which enables a sub-RTT latency when processing update
requests. To expose data-persistence domain to the network,
we log updates in the network using persistent memory and
send acknowledgments to clients as soon as a request en-
ters the persistent domain. The update requests are then
forwarded to the server, but this way, the server processing
happens off the critical path. As the requests have entered
a persistent state before being processed by the server, the
client can now proceed before the server acknowledges.
In this work, we design and implement PMNet, a mecha-

nism necessary to provide persistent logging support in pro-
grammable network devices. However, designing PMNet has
many challenges. First, how can a network device track re-
quests and persistently maintain their state? Second, given
the requests have been persisted in the network, how can the
system recover after a failure? Third, how can PMNet main-
tain the same application-level ordering guarantees with
in-network persistence? Next, we describe our key insights.
Persistent logging. PMNet uses a simple protocol to ensure
that updates are logged persistently in the network device

1



Server

PMNet

PM

MAT Pipeline
❶Send Request

❷Log
❹PMNet ACK ❺Server ACK

❸Forward Request

Client

Persistent Data

Figure 2. Persistent logging in PMNet.

with sub-RTT latency, as illustrated in Figure 2. First, when
incoming update requests are traversing the network device
(step ➊), PMNet logs those requests in its PM (step ➋) and
forwards them to the server (step ➌). Second, as the requests
have already entered a persistent domain of the network
device, PMNet immediately sends an acknowledgment to
clients (step ➍), allowing them to progress. Therefore, the
latency is significantly reduced as the client no longer needs
to wait for the whole RTT. Third, PMNet invalidates the
logged entry when the server has completed the requests
and has sent an acknowledgment to PMNet (step ➎).
System recovery. In case a failure happens in the persistence
domain (i.e., the network device and/or server), PMNet needs
to ensure that logged entries are reflected on the server.
When the system is up again, PMNet resends the logged
requests so that servers can redo them in the same order as
theywere sent. As such, the server can recover to a consistent
state with the logged requests.
In-order delivery. PMNet always maintains the ordering
of the original system. As the logged updates are reflected
later on the server, one may think that a client will read a
stale value from the server. However, we observe that of-
tentimes large-scale workloads optimize for independent
clients. For example, in a Twitter workload [13], the clients
update tweets and followers without maintaining any order.
Still, PMNet provides ordering guarantees when there is a
strict ordering requirement within multiple clients. These
workloads enforce ordering using locks to ensure that only
one client can update a critical value. In another example of
a TPCC workload [14], the modification of the stock price is
placed in a critical section using locking primitives. PMNet
forwards the lock operations in a critical section and the or-
dering is enforced on the server. Once the client acquires the
lock, lock requests from other clients are rejected. However,
subsequent update requests from the same client can still
benefit from PMNet, i.e., sub-RTT latency.

4 Implementation
We implement PMNet on a Xilinx UltraScale+ FPGA plat-
form, by integrating data persistence on top of NetFPGA-
SUME [12] (with a 10G network interface). In this platform,
we enable data persistence with 2GB of DRAM-emulated PM
that has latency adjusted to match Optane PM. Using this
platform, we demonstrate a programmable switch (PMNet-
Switch) and a NIC (PMNet-NIC). As the server stack domi-
nates the request RTT, both PMNet-Switch and PMNet-NIC
provide similar benefits.

0e4

2e4

4e4

6e4

R
eq
u
es
t/
s

Client-Server PMNet

Figure 3. Update throughput of PMNet compared to
Client-Server baseline.

On top of PMNet, we further integrate additional func-
tionalities. (1) PMNet-Switch with caching:We demonstrate
that our logging mechanism for update requests works co-
herently with a prior work that caches read requests in a
switch [10]. (2) PMNet-Switch with replication:We develop an
in-switch replication mechanism that builds upon PMNet’s
logging protocol. The whole implementation of PMNet is
publicly available at https://pmnet.persistentmemory.org.

5 Contribution and Key Results
In this work, we expose data persistence to the network to
improve the performance of update requests. We implement
PMNet using a programmable data-plane device, integrated
with a persistent memory that logs in-flight update requests.
To evaluate PMNet, we adapt eight PM workloads to PMNet,
including Intel’s PMDK-based key-value stores [7], a PM-
optimized Redis database [8], Twitter [13], and TPCC [14].
Figure 3 shows the update throughput of PMNet compared to
a Client-Server baseline in eight workloads. The result shows
that PMNet improves the throughput of update requests by
4.31× and the 99th-percentile tail latency by 3.23× in these
workloads. In addition, PMNet improves read-caching and
state-replication latency by 3.36× and 5.88× respectively,
over traditional, baseline systems.

References
[1] Abadi et al. TensorFlow: A system for large-scale machine learning.

In OSDI, 2016.
[2] Barroso et al. Web search for a planet: The Google cluster architecture.

MICRO, 2003.
[3] Barroso et al. Attack of the killer microseconds. Commun. ACM, 2017.
[4] Bosshart et al. Forwarding metamorphosis: Fast programmable match-

action processing in hardware for SDN. SIGCOMM, 2013.
[5] Costa et al. Camdoop: Exploiting in-network aggregation for big data

applications. In NSDI, 2012.
[6] Dean et al. MapReduce: Simplified data processing on large clusters.

In OSDI, USA, 2004.
[7] Intel. Persistent memory programming.
[8] Intel. Redis, 2018. https://github.com/pmem/redis/tree/3.2-nvml.
[9] Izraelevitz et al. Basic performance measurements of the Intel Optane

DC persistent memory module. arXiv, 2019.
[10] Jin et al. NetCache: Balancing key-value stores with fast in-network

caching. In SOSP, 2017.
[11] Li et al. Accelerating distributed reinforcement learningwith in-switch

computing. In ISCA, 2019.
[12] NetFPGA. NetFPGA-SUME Virtex-7 FPGA development board.
[13] Sanfilippo. antirez/retwis. https://github.com/antirez/retwis.
[14] Transaction Processing Performance Council (TPC). TPC-C. http:

//www.tpc.org/tpcc/.

2

https://pmnet.persistentmemory.org
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/antirez/retwis
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/

	1 Introduction
	2 Background
	3 In-Network Data Persistence
	4 Implementation
	5 Contribution and Key Results
	References

