
IceClave: A Trusted Execution Environment
for In-Storage Computing*

Luyi Kang†‡, Yuqi Xue†, Weiwei Jia†, Xiaohao Wang, Jongryool Kim§, Changhwan Youn§,
Myeong Joon Kang§, Hyung Jin Lim§, Bruce Jacob‡, Jian Huang

UIUC, ‡University of Maryland, College Park, §SK Hynix

Abstract
In-storage computing with modern solid-state drives (SSDs) enables
developers to offload programs from the host to the SSD. It has been
proven to be an effective approach to alleviating the I/O bottleneck.
To facilitate in-storage computing, many frameworks have been
proposed. However, few of them treat the in-storage security as the
first citizen. Specifically, since modern SSD controllers do not have
a trusted execution environment, an offloaded (malicious) program
could steal, modify, and even destroy the data stored in the SSD.

In this paper, we first investigate the attacks that could be con-
ducted by offloaded in-storage programs. To defend against these
attacks, we build a lightweight trusted execution environment,
named IceClave for in-storage computing. IceClave enables secu-
rity isolation between in-storage programs and flash management
functions. IceClave also achieves security isolation between in-
storage programs and enforces memory encryption and integrity
verification of in-storage DRAM with low overhead. To protect
data loaded from flash chips, IceClave develops a lightweight data
encryption/decryption mechanism in flash controllers. We develop
IceClave with a full system simulator. We evaluate IceClave with a
variety of data-intensive applications such as databases. Compared
to state-of-the-art in-storage computing approaches, IceClave in-
troduces only 7.6% performance overhead, while enforcing security
isolation in the SSD controller with minimal hardware cost. Ice-
Clave still keeps the performance benefit of in-storage computing
by delivering up to 2.31× better performance than the conventional
host-based trusted computing approach.

1 Background and Motivation
In-storage computing has been a promising technique for accelerat-
ing data-intensive applications, especially for large-scale data pro-
cessing and analytics. It moves computation closer to the data stored
in the storage devices like flash-based solid-state drives (SSDs), such
that it can overcome the I/O bottleneck by reducing the amount of
data transferred between the host machine and storage devices. As
modern SSDs are employing multiple general-purpose embedded
processors and large DRAM in their controllers, it becomes feasible
to enable in-storage computing in reality today.

To facilitate the wide adoption of in-storage computing, a variety
of frameworks have been proposed. All these prior works show
the great potential of in-storage computing for accelerating data
processing in data centers. However, most of them focus on the
performance and programmability, but few of them treat the secu-
rity as the first citizen in their design and implementation, which
imposes great threat to the user data and SSD devices, and further
hinders its widespread adoption.

As in-storage processors operate independently from the host
machine, and modern SSD controllers do not provide a trusted exe-
cution environment (TEE) for programs running inside the SSDs,
they pose severe security threats to user data and flash chips. To be
specific, a piece of offloaded (malicious) code could (1) manipulate
the mapping table in the flash translation layer (FTL) to mangle the

∗This work has been published at MICRO’21 [2] and is publicly available at
https://arxiv.org/pdf/2109.03373.pdf.
†Co-primary authors.

NAND Flash

Flash Translation Layer

…… is
o
la

te
d

isolated

2

1

In-storage 

App 1

IceClave

In-storage 

App 2

IceClave

In-storage 

App N

IceClave

Figure 1: IceClave enables in-storage TEEs to achieve security
isolation between in-storage programs, FTL, and flash chips.

data management of flash chips, (2) access and destroy data belong-
ing to other applications, and (3) steal and modify the memory of
co-located in-storage programs at runtime. Even worse, adversaries
can steal and modify intermediate data and results generated by
in-storage programs via physical attacks such as cold-boot attack,
bus snooping attack, and replay attack.

To overcome these security challenges, state-of-the-art in-storage
computing frameworksmaintain a copy of the privilege information
in the SSD DRAM and enforcing permission checks for in-storage
programs. However, such a solution still suffers from many secu-
rity vulnerabilities. An alternative approach is to adopt Intel SGX.
Unfortunately, modern in-storage processors do not support SGX,
and it also incurs significant performance overhead [1].

Therefore, providing a secure, lightweight, and trusted execution
environment for in-storage computing is an essential step towards
its widespread adoption. Ideally, we wish to enjoy the performance
benefits of in-storage computing, while enforcing the security iso-
lation between in-storage programs, the core FTL functions, and
physical flash chips, as demonstrated in Figure 1.

2 Threat Model
We target the multitenancy where multiple application instances
operate in the shared SSD. Following the threat models for cloud
computing today, we assume the cloud computing platform has
provided a secure channel for end users to offload their programs
to the shared SSD. The related code-offloading techniques, such
as secure RPC and libraries, have already been deployed in cloud
platforms. However, a program potentially offloaded by a malicious
user can still include (hidden) malicious code.

We assume hardware vendors do not intentionally implant back-
door or malicious programs in their devices. However, as we deploy
those computational SSDs in shared platforms (e.g., public cloud),
we do not trust the platform operators who could initiate board-
level physical attacks such as bus-snooping and man-in-the-middle
attacks, or exploit the host machine to steal or destroy data stored
in SSDs. Similar to the threat model for SGX, we assume that the
processor chip is safe against physical attacks, and we exclude
software side-channel attacks [1].

3 Design and Implementation
In this paper, we present IceClave, a trusted execution environment
for in-storage computing. IceClave is designed specifically for mod-
ern SSD controllers and in-storage programs, with considering the
unique flash properties and in-storage workload characteristics.
With ensuring the security isolation, IceClave includes (1) a new

1

https://arxiv.org/pdf/2109.03373.pdf


PCIe

CPUCPU

Host
Machine

PC
Ie

 In
te

rfa
ce

Host

CPU

Applications

IceClave Library

NVMe Driver

SSD

IceClave Runtime

FTL

Secure Non-Secure

Security Monitor

In-Storage
App 1

In-Storage
App 2

Interconnect

St
re

am
 C

ip
he

r
En

gi
ne

Fl
as

h 
C

on
tro

lle
r

Fl
as

h 
C

hi
ps

DRAM

MEE

Figure 2: Overview of IceClave architecture.

memory protection scheme to protect the FTL and reduce the con-
text switch overhead incurred by flash address translations; (2) a
technique for securing in-storage DRAM for in-storage programs
by taking advantage of the fact that most in-storage applications
are read intensive; (3) a stream cipher engine for securing data
transfers between storage processors and flash chips, with low per-
formance overhead and energy consumption; and (4) a runtime
system for managing the life cycle of in-storage TEEs. IceClave
aims to defend against three attacks: (1) the attack against the FTL;
(2) the attack against co-located in-storage programs; and (3) the
potential physical attack against the data loaded from flash chips
and intermediate data written in the in-storage DRAM.
Protecting FlashTranslation Layer. As FTLmanages flash blocks
and controls how user data is mapped to each flash page, its protec-
tion is crucial. If any malicious in-storage programs gain control
over it, they can read, erase, or overwrite data from other users,
causing severe consequences such as data loss and leakage.

To protect FTL from malicious in-storage programs, we have to
guarantee offloaded applications cannot access memory regions
used by FTL. We can use ARM TrustZone to create secure and
normal worlds, and then place FTL functions in the secure world,
and place all in-storage applications in the normal world. However,
this will cause significant performance overhead for in-storage
applications. This is because when an application accesses a flash
page each time, it needs to context switch to the secure world which
hosts the FTL and its address mapping table.

To address this challenge, we partition the entire physical main
memory space into three memory regions: normal, protected, and
secure by extending TrustZone. We allow FTL to execute in the
secure world, and place in-storage applications in the normal world;
therefore, they cannot access any code or data regions that belong
to the FTL. We use the protected memory region in the normal
world to host the shared address mapping table, such that in-storage
applications can only read the mapping table entries for address
translation, without paying the context-switch overhead.
Access Control for In-Storage Programs. Although each in-
storage program only has the read access permission when access-
ing the mapping table of the FTL, a malicious in-storage program
could probe the mapping table entries (e.g., by brute-force) and
easily access the data belonging to other in-storage programs.

To address this challenge, we extend the address mapping table
of FTL. We use the ID bits in each entry (8 bytes per entry) to
track the identification of each in-storage TEE, and use them to
verify whether an in-storage TEE has the permission to access
the mapping table entry or not. Each in-storage program only has
accesses to the address mapping table of the FTL and allocated
memory space. Accesses to other memory locations will result in a
fault in the memory management unit.

Aggregate

Arith
metic

Filte
r

TPC-H Q1

TPC-H Q3

TPC-H Q12

TPC-H Q14

TPC-H Q19
TPC-B

TPC-C

Wordcount
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
or

m
al

iz
ed

 P
er

f
(L

ow
er

 is
 b

et
te

r) Host Load Time
Host Compute Time

SSD Load Time
SSD Compute Time

Memory Encrypt

Figure 3: Performance comparison of Host, Host+SGX, ISC,
and IceClave (from left to right).

Securing In-Storage DRAM. In-storage programs load data from
flash chips to the SSD DRAM for data processing. The user data
that includes raw data, intermediate data, and produced results in
the DRAM could be leaked or tampered with at runtime due to
physical attacks. To address this challenge, IceClave enables both
memory encryption and integrity verification.

For memory encryption, the state-of-the-art work usually uses
split-counter encryption [3], which has significant performance
overhead. However, this is less of a concern for in-storage comput-
ing because in-storage workloads are mostly read intensive. Based
on this observation, we design the hybrid-counter scheme.

The key idea of hybrid-counter is that we only usemajor counters
for read-only pages. For writable pages, we apply the traditional
split-counter scheme. As minor counters will not change as long
as the pages are read-only, we do not need minor counters for
read-only pages. In this case, we can improve the counter fetching
performance by packing more counters per cache line.

To ensure the processor receives exactly the same content as
it wrote in the memory most recently, we also enable memory
integrity verification by employing Bonsai Merkle Tree (BMT) [3].
Due to the hybrid-counter scheme, IceClave maintains two Merkle
trees, but the extra memory cost is negligible.
IceClave Implementation.We show the overview of IceClave
architecture in Figure 2. We extend ARM TrustZone to create secure
and normal world for security isolation and protection of different
entities in FTL, while enabling memory encryption and verification
with memory encryption engine (MEE). We implement IceClave
with a computational SSD simulator developed based on the Simp-
leSSD, Gem5, and USIMM simulator. To verify the core functions
of IceClave, we also implement a real-system prototype with an
OpenSSD Cosmos+ FPGA board.
Performance of IceClave.We evaluate IceClave with a set of
synthetic and real-world workloads that are typical for in-storage
computing. We compare IceClave with the following state-of-the-
art solutions: (1) host-based computing without security (Host),
(2) host with Intel SGX (Host+SGX), and (3) in-storage computing
without security (ISC). As shown in Figure 3, IceClave outperforms
Host and Host+SGX by more than 2.3×, respectively. Compared to
the ISC baseline, IceClave introduces 7.6% performance overhead,
due to the security techniques used in the in-storage TEE. We
presented more sensitivity analyses in the paper [2].

References
[1] Victor Costan and Srinivas Devadas. [n. d.]. Intel SGX Explained.

https://eprint.iacr.org/2016/086.pdf.
[2] Luyi Kang, Yuqi Xue, Weiwei Jia, Xiaohao Wang, Jongryool Kim, Changhwan

Youn, Myeong Joon Kang, Hyung Jin Lim, Bruce Jacob, and Jian Huang. 2021.
IceClave: A Trusted Execution Environment for In-Storage Computing. InMICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’21). Association for Computing Machinery, New York, NY, USA, 199–211. https:
//doi.org/10.1145/3466752.3480109

[3] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. 2007. Using
address independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly. In 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007). IEEE, 183–196.

2

https://eprint.iacr.org/2016/086.pdf
https://doi.org/10.1145/3466752.3480109
https://doi.org/10.1145/3466752.3480109

	Abstract
	1 Background and Motivation
	2 Threat Model
	3 Design and Implementation
	References

