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High density, high-speed and low power consuming nonvolatile memories are currently
being vigorously explored for use in next-generation computation, particularly due to the
performance gap between the logic and memory elements of the current computational
architecture. Electrically switchable spontaneous. polarization of ferroelectric materials
enables a robust nonvolatile memory solution. Using ultrathin films of ferroelectric
materials as a tunnel barrier in metal/ferroelectric/metal trilayer structure, so-called
ferroelectric tunnel junctions (FTJ), is being explored widely as a potential nonvolatile
memory element. Unlike ferroelectric RAM (FeRAM), FTJ offers nondestructive readout,
in addition to low operation energy and high operation speed. In this work, we have
demonstrated FTJs with a very large OFF/ON resistance ratio and relatively low resistance
area product (RA) with ~ 1 nm thick Zr doped HfO2 (HZO) ferroelectric tunnel barrier.
We stabilized ferroelectricity in ultrathin films of rhombohedral HZO (R-HZO) through
the substrate-induced compressive strain. The resistance area product at the bias voltage (~
300 mV) required for one-half of the zero-bias TER ratio is three orders of magnitude lower
than the reported value with relatively thick ferroelectric barriers, which significantly
improves signal-to-noise ratio (SNR) during the read operation. These results set the stage
for further exploration of Hafnia-based FTJs for non-volatile memory applications.
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Figure 1: (a) XRD patterns of the
() e euantel datt for .1 nea HZO films on LSMO-buffered STO
e dee (001) substrates with thickness
ranging from 1 nm to 18 nm. (b) X-
ray  reflectivity (XRR) and
et corresponding fitting analysis (blue
T : 4 ! lines) of ~ 13 nm and ~ 8 nm of HZO
2Bi{degres) 20 (degree) films grown on STO (001) substrate
for determining the growth rate of
HZO films. (c) XRR fitting analysis
of HZO/LSMO bilayer film
confirms HZO and LSMO
thicknesses are ~ 60 nm and ~ 1nm,
respectively.  (d) High-resolution
transmission electron microscopy
image of the HZO (~2.5 nm)/LSMO
bilayer, epitaxially grown on STO
(001) substrate, verify the growth
rate of the HZO laver.
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Figure 2: (a) Ferroelectric hysteresis loop at 10 kHz of a 10 nm HZO film, measured at 100 K to
reduce the leakage current, exhibits the remanent polarization of ~ 17 uC/cm? (b) Schematics of the
voltage pulse for PUND measurement to extract the switched polarization, which is typically 2X the
remanent polarization from the P-V loop. (¢) PUND characterization of ~ 2.5 nm HZO film for two
circular capacitor devices (@~ 10pum) showing the remanent polarization of ~ 30 uC/cm?.
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Figure 3: (a) Current-voltage
characteristic for OFF and ON
states of an FTJ with ~ 1nm HZO
tunnel barrier (@~ Sum) and (b)
“d o 107 corresponding TER as a function of
the read voltage. (¢) OFF and ON
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Figure 4: (a) Junction resistance versus
S 10°%t 1100 - write voltage pulse (black) with a width of
9 10 g ~ 1 ms and corresponding current-voltage
& . % (blue) characteristics of a FTJ (@~ Spm)
@ 107 {1 E with ~ 1 nm HZO barrier layer. (b) The
S {o1 o PFM amplitude hysteresis loop of ~ 1nm
10> HZO film, megsgred with 1ms Yoltage
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