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Recommendation Models are Important

e Use cases include:
* E-commerce marketplaces
* Social media platforms
* Entertainment services

* Consumes most of Al compute cycle at Meta

* >50% of training compute cycle = T
* > 80% of inference compute cycles .\“,




Recommendation Model Architecture
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High Performance Training at Meta
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The Criticality of Checkpointing

* Failure recovery (ensure
progress)

* Migrating training jobs
* Publishing snapshots
* Transfer learning
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Checkpoint Challenges

* Accuracy
* Frequency
* Write bandwidth

* Storage capacity
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Check-n-Run

e Goal: a checkpointing system that significantly reduces the required
write-bandwidth and storage capacity, without degrading accuracy

* What to Checkpoint?
* Decoupled Checkpointing
e Reducing write-bandwidth (WB) and storage capacity



Checkpointing Worktlow
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Reducing WB with Differential Checkpointing

* Motivation: model accesses are sparse
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Approaches for Differential Checkpointing

* One-Shot Differential Checkpoint
* Consecutive Incremental Checkpoint
* Intermittent Differential Checkpoint
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Checkpoint Quantization

* Compress checkpoint without degrading
training accuracy

* Approaches:
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Comparing Quantization Strategies

e Uniform quantization
* Non-uniform quantization using k-means
e Adaptive uniform quantization
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Quantization Bit-width Selection

* Quantization error may accumulate

* Select bit-width based on the probability of a failure

0.02
0.015
0.01
0.005

Accuracy Degradation

3-Bit Checkpoint Quantization:

,,;_/-I—"L |
0 1x10%  2x10°% 3x10°

Number of Trained Records

Accuracy Degradation

0.02
0.015

0.01

4-Bit Checkpoint Quantization:

0 1x10%  2x10% 3x10°

Number of Trained Records



Overall Reduction
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Summary

* The checkpointing of large recommendation systems at scale is
challenging

* Check-n-run:
* High performance checkpointing
* Significantly reduces the required write-bandwidth and storage capacity

e Questions? aeisenman@fb.com



http://aeisenman@fb.com

