
Check-N-Run: a Checkpointing System for
Training Deep Learning Recommendation Models

(Accepted to NSDI 2022)
Assaf Eisenman1, Kiran Kumar Matam1, Steven Ingram1, Dheevatsa Mudigere1,

Raghuraman Krishnamoorthi1,Krishnakumar Nair1, Misha Smelyanskiy1, Murali Annavaram1,2

1Meta Platforms, Inc. 2USC

1. Introduction
Deep learning has become extensively adopted in many pro-
duction scale data center services. In particular, deep learn-
ing enabled recommendation systems power a wide variety
of products and services. At Meta’s datacenter fleet, for ex-
ample, deep recommendation models consume more than
80% of the machine learning inference cycles and more than
50% of the training cycles. Similar demands can be found at
other companies [3].

Typically, the accuracy of deep learning algorithms in-
creases as a function of the model size and number of fea-
tures. Because of their large size, these models also must
be trained with massive datasets and run in a distributed
fashion. Therefore, training recommendation models at pro-
duction scale may take several days, even when training on
highly optimized GPU clusters.

Given that the training runs span multiple GPU clusters
over multiple days and weeks, there is an abundance of fail-
ures that a training run may encounter. These include net-
work issues, hardware failures, system failures (e.g. out of
memory), power outages, and code issues. Checkpointing
is an important functionality to quickly recover from such
failures for reducing the overall training time and ensure
progress. Checkpoints are essentially snapshots of the run-
ning job state taken at regular intervals and stored in non-
volatile memory. To recover from failure and resume train-
ing, the most recent checkpoint is loaded.

Checkpoints must meet several key criteria:
(1) Accuracy: They must be accurate to avoid training

accuracy degradation. In other words, when a training run is
restarted from a checkpoint, there should be no perceivable
difference in the training accuracy or any other related met-
ric. As has been stated in prior works on production scale
recommendation models [4], even a tiny decrease of predic-
tion accuracy would result in an unacceptable loss in user
engagement and revenues. Hence, preserving accuracy is a
constraint for checkpoint management in recommendation
models.

(2) Frequency: Checkpoints need to be frequent for min-
imizing the re-training time (the gap between failure time
and the most recent checkpoint timestamp) after resuming
from a checkpoint. For instance, taking a checkpoint every
1000 batches of training data may lead to wasting time re-
training those 1000 batches. Taking a checkpoint after 5000
batches leads to 5× more wasted work in the worst case. In

the case of online training, the checkpoint frequency directly
impacts how quickly the inference adapts in real time and its
prediction accuracy.

(3) Write Bandwidth: Checkpoints at Meta, as well as
in other industrial settings, are written to remote non-volatile
memory to provide high availability (including replications)
and scalable infrastructure. Writing multiple large check-
points concurrently from different models that are being
trained in parallel (e.g., thousands of checkpoints, each in
the order of terabytes) to remote storage requires substantial
network and storage bandwidths, which constitute a bottle-
neck and limit the checkpoint frequency. Hence, it is neces-
sary to minimize the required bandwidth to enable frequent
checkpoints.

(4) Storage capacity: Storing checkpoints at-scale re-
quires hundreds of petabytes of storage capacity, with high-
availability and short access times. Checkpoints at Meta are
typically stored for many days, thus the number of stored
checkpoints at a given time is reflected by the number of
training jobs in that time period. While the last checkpoint
per run is saved by default, it is often useful to keep several
recent checkpoints (e.g. for debugging and transfer learn-
ing). As models keep getting larger and more complex, re-
sulting in an ever increasing storage capacity demand, it is
necessary to reduce the corresponding checkpoint size to
minimize the required storage capacity for accommodating
all checkpoints.

Unfortunately, standard compression algorithms such as
Zstandard [2] are not useful enough for deep recommenda-
tion workloads. In our experience, we were able to reduce
the checkpoint size and the associated write-bandwidth and
storage capacity by at most 7% using Zstandard compres-
sion.

Based on the above challenges, we present Check-N-
Run, a high-performance scalable checkpointing system,
particularly tailored for recommendation systems. Check-
N-Run’s main goal is to significantly reduce the required
write-bandwidth and storage capacity, without degrading ac-
curacy. Our goal is to work within the accuracy degradation
constraint set by business needs (< 0.01%).

Check-N-Run builds on several techniques:
(1) Differential checkpointing: Check-N-Run utilizes

differential checkpointing for reducing the checkpoint write
bandwidth. This is a technique that is particularly well suited
for recommendation models where only a small fraction of



the model parameters are updated after each iteration. This is
a unique property of recommendation models. In traditional
DNNs the entire model is updated after each iteration since
gradients are computed for all the model parameters. Rec-
ommendation models, on the other hand, access and update
only a small fraction of the model during each iteration. Dif-
ferential checkpoints leverage this observation by tracking
and storing the modified parts of the models.

(2) Quantization: Check-N-Run leverages quantization
techniques to significantly reduce the size of checkpoints.
This optimization reduces the required write bandwidth to
storage, and the storage capacity. While quantization of
model parameters during training may have a negative im-
pact on accuracy, checkpointing has the advantage that quan-
tization is only used to store the checkpoint, while full pre-
cision is used for training. The only time checkpoint quanti-
zation may impact training accuracy is when the quantized
checkpoint is restored and de-quantized to resume training.
Check-N-Run leverages this insight to maintain training ac-
curacy within our strict bounds.

(3) Decoupling: To minimize the run time overhead and
training stalls, Check-N-Run creates distributed snapshots of
the model in multiple CPU host memories. That way, train-
ing on the GPUs can continue while Check-N-Run is op-
timizing and storing the checkpoints in separate processes
running on the CPU in the background. Check-N-Run en-
ables the frequent checkpointing of hundreds of complex
production training jobs running in parallel over thousands
of GPUs, each job training a very large model (in the order
of terabytes).

The contributions in this paper include:
(1) To our knowledge, Check-N-Run is the first published
checkpointing system that uses quantization and differential
views for efficiently storing checkpoints of recommendation
systems in non-volatile memory at-scale, demonstrated on
real-world workloads.
(2) We design and evaluate a wide range of checkpoint quan-
tization approaches to significantly reduce the consumed
storage by 4-13×, without degrading the training accuracy.
(3) We introduce differential checkpoints, which store the
modified part of the model, rather than storing the entire
model. Differential checkpoints reduce the average write
bandwidth by more than 50%, with no impact on accuracy.
(4) Finally, we demonstrate a heterogeneous checkpointing
mechanism that combines differential checkpointing with
quantization. Check-N-Run provides 6− 17× improvement
in the required checkpointing write bandwidth, and 2.5 ×
−8× less capacity, without sacrificing accuracy and run
time.

The full details, including the design and evaluation,
are elaborated in our full paper [1]. Link

 0X

 2X

 4X

 6X

 8X

10X

12X

14X

16X

18X

L ≤ 1 1<L≤3 3<L<20 20 ≤ L

R
ed
uc
tio
n

Average Bandwidth Storage Capacity

Figure 1. Overall reduction of the checkpoint average write
bandwidth and storage capacity. L represents the number of
times the training job had to resume from a checkpoint.

2. Results
Figure 1 presents the overall reduction in write bandwidth
and storage capacity, when combining both quantization and
differential checkpointing. When a training job is expected
to resume from checkpoint no more than one time, Check-
N-Run reduces the average consumed write bandwidth and
maximum storage capacity by 17× and 8×, respectively.
Even in the not so common case of more than 20 failures,
Check-N-Run reduces the average bandwidth by 6× and the
maximum storage capacity by 2.5×. Note that these savings
are not linearly proportional to the chosen quantization bit-
width due to the metadata structure. That structure includes
the differential checkpoint index and quantization parame-
ters. Metadata structure can be further optimized in future
work.

References
[1] Check-N-Run: a checkpointing system for training deep learn-

ing recommendation models. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22),
Renton, WA, 2022. USENIX Association.

[2] Y. Collet and C. Turner. Smaller and faster data compression
with zstandard. http://www. rgoarchitects. com/Files/fallacies.
pdf, 2016.

[3] S. Hsia, U. Gupta, M. Wilkening, C.-J. Wu, G.-Y. Wei, and
D. Brooks. Cross-stack workload characterization of deep rec-
ommendation systems. In 2020 IEEE International Symposium
on Workload Characterization (IISWC), pages 157–168. IEEE,
2020.

[4] W. Zhao, J. Zhang, D. Xie, Y. Qian, R. Jia, and P. Li. Aibox:
Ctr prediction model training on a single node. In Proceedings
of the 28th ACM International Conference on Information and
Knowledge Management, pages 319–328, 2019.

https://research.facebook.com/file/1616033632064808/Check-N-Run--a-Checkpointing-System-for-Training-Deep-Learning-Recommendation-Models.pdf

	Introduction
	Results

