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Generalized Integrated Interleaved (Gll) Codes
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» Each sub-codeword (cy, 1, ***) is a short BCH or
Reed-Solomon (RS) codeword capable of correcting

to errors

» The nested codewords (¢, ¢, -**) belong to more

powerful BCH or RS codes

» The extra correction power of the nested
codewords are manifested as parities shared by the

sub-codewords

» Gll codes can achieve hyper speed decoding with
good correction capability and low redundancy



Decoding of Gll Codes
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» Two decoding stages: i) individual sub-word decoding; ii) nested decoding
» Nested decoding has up to v rounds

= Compute higher-order syndromes of the nested words

= Convert them to higher-order syndromes of the sub-words

= Correct more errors in the sub-words



Performance of Short GII-BCH Codes

» Short codes are required for storage class memories (SCMs)

= Short length, e.g., several thousand bits
= High code rate, e.g., 90%
= Example GII-BCH code
e 256 parity bits to protect 2560 data bits

* m = 4 sub-codewords, each has 704 bits
* v = 3 nested codewords

¢ [to, tll tz, t3] = [3,5,6,11]
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» GII-BCH codes theoretically achieve much better error-correcting performance than traditional BCH

codes that have similar complexity

» Miscorrections on the sub-words cause severe performance degradation for short Gll codes



Miscorrections and Previous Mitigation Schemes

» Miscorrections in t-error-correcting BCH decoding: a
received word with > t errors is decoded to another
codeword

» Miscorrections happen more often for smaller t

» If a mis-corrected sub-word is not detected, the more
powerful nested decoding is not activated

» Prior miscorrection detection/mitigation schemes
= Method 1: check higher-order nested syndromes

= Method 2: test if the error locator polynomial
degree is higher than t

= Method 3: utilize extended BCH codes
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Overheads of Previous Miscorrection Mitigation Schemes
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» The three miscorrection mitigation schemes have negligible silicon area overhead
» Using extended BCH codes and check error locator polynomial degree do not bring latency overhead

» Computing nested syndromes before each nested decoding round bring significant latency overhead



Proposed Improved Miscorrection Mitigation Schemes

» Skip nested syndrome checking when miscorrections are less likely to happen
= When the degree of error locator polynomial, deg(A(x)), is small

deg(A(x)) | Probability of miscorrection
— n =704 3-error-correcting BCH sub-
3 54 %10 .
codeword corrupted with 6 errors
2 2.5x107%
1 6x 1077

» Estimated frame error rate (FER) degradation

. 1 t'l? . _1
caused by skipping the nested syndrome checking Fl(l) = (v " l) (z quGV(Vl)) (Z‘fﬁ:o qbw)m
if deg(A(x)) < th in nested decoding round i w=titd

= G‘g,i): probability of a w-error-corrupted sub-word miscorrected with deg(A(x)) < th

"¢, = (;lv) pp (1 — pp)"~": probability of a n-bit sub-word corrupted with w errors

" pp: input bit error rate (BER)



Performance with Syndrome Checking Skipped when deg(A(x)) < th
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> Slight FER degradation when th = 1 » Syndrome checking for miscorrection detection is

needed much less frequently

» Reduce the average nested decoding latency



Skip Syndrome Checking at Later Nested Decoding Rounds

» Skip nested syndrome checking when miscorrections are less likely to happen

= After later nested decoding rounds that have larger t;

» Estimated (FER) degradation caused by skipping the nested syndrome checking after nested decoding
rounds &

E2=("7°) (Zt ¢WGV’§5)) (b))

w=ts+1

E G‘;,(S): probability of a w-error-corrupted sub-word miscorrected with deg(A(x)) < ts and not
detected by 1-bit extended BCH code



Performance with Skipped Syndrome Checking
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» Small FER degradation whenth = 1and § = 2

» Reduce both the average and worst-case nested decoding latency



2-Bit Extended BCH Codes for Miscorrection Detection

» Utilize 2-bit extended BCH codes for each sub-codeword
= Multiplying (x? + 1) to all generator polynomials -
o
L
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Global Parities for Miscorrection Detection

» Only one sub-word is miscorrected in most cases
» XOR result of all sub-words can detect miscorrections
= Partition each sub-codeword into { segments as evenly as possible

= The i-th global parity protects all the bits in the i-th segments of all sub-codewords
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Performance with All Proposed Miscorrection Detection Schemes
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» FER loss becomes negligible compared to the prior design [1]

» The 2-bit extended BCH codes and { =6 global parities only lead to (4+6)/704/4=0.35% code rate loss



Latency Analyses and Comparisons
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43% average nested decoding latency reduction with almost the same FER, code rate, and silicon area!



Conclusions

» Optimize miscorrection mitigation schemes are developed for short GII-BCH codes

» The nested syndrome checking is skipped when miscorrections are less likely to happen
» 2-bit extended BCH codes and global parities are utilized to close the performance gap
» Formulas are provided to estimate the achievable FERs

» Proposed schemes lead to substantial latency reduction with almost the same error-correcting
performance, code rate, and silicon area requirement
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