Coding on Barrier Channels beyond Guaranteed Correction

Yuval Ben-Hur and Yuval Cassuto

The Andrew and Erna Viterbi Department of Electrical and Computer Engineering Technion - Israel Institute of Technology

NVMW 2022 - San Diego, California, USA

Outline

Motivation

- 2 Dual-parameter Barrier channel: definition and capacity
- Operation Prior work: code construction
- 4 Decoding beyond guaranteed correction
 - Simplified ML decoding
 - Enhanced-performance practical decoders

5 Conclusion

Introduction

- Efficient information systems usually span multiple representation levels per channel use.
- The most common multi-bit scaling model is the *Q*-ary symmetric channel.
- We study the **Barrier channel** a unique scaling principle where all errors are either to or from a specific level/symbol.

Motivation (1)

- Binary systems that have an additional representation level.
 - Increased representation power ($\sim 60\%).$
 - Non-symmetric error model.

- Some possible applications: NextGen EEPROM [Bitouze, 2010], Wideband COMM [Vladimirov, 2017], IoT biosensors [Tang, 2020].
- Ternary-Input AWGN channel: Transitions between extreme levels are negligible.

Ben-Hur and Cassuto

Coding on Barrier Channels

Motivation (2)

- In-memory processing [Luo, 2020]: Enhanced efficiency of memristive in-memory logic using **Ternary logic**.
- Switching faults may cause barrier errors, e.g.:
 - Open-circuit (O.C.) fault in AND gate outputs 0.
 - Short-circuit (S.C.) fault in OR gate outputs 2.

$$x / \underbrace{\text{O.C.}}_{y} \underbrace{\qquad \qquad } x \wedge y / \underbrace{\text{O}}_{y} \underbrace{\qquad \qquad } x / \underbrace{\text{S.C.}}_{y} \underbrace{\qquad \qquad } x \vee y / \underbrace{\text{2}}_{y}$$

• Model: Barrier channel applied on computation result.

Channel definition

Definition: Q-ary Dual-Parameter Barrier channel

Let $Q \in \mathbb{N}$ and let $0 \leq p,q \leq 1$. $W_Q(p,q)$ is defined as follows

Several specific versions of $W_Q(p, q)$ were already studied.

- $W_2(p,q)$ is the binary asymmetric channel BAC(p,q).
- $W_Q(p, 0)$ is the Q-ary Asymmetric Parallel channel [Ahlswede-Aydinian, 2008].
- $W_3(q/2, q)$ is the Non-symmetric Ternary channel [Bitouze et al., 2010].

Channel capacity of $W_3(p,q)$

Theorem: Capacity of $W_3(p,q)$

Let $0 \le p, q \le 1$ such that p + q < 1. Define $\beta_{p,q}(\varphi) \triangleq q + (1 - p - q) \varphi$ and $\gamma(a) \triangleq h_2(a) + a$. Then,

$$\mathsf{Cap}\left(W_{3}(p,q)\right) = \gamma\left(\beta_{p,q}(\varphi^{*})\right) - \varphi^{*}h_{2}(p) - (1-\varphi^{*})\gamma\left(q\right),$$

Channel capacity of $W_3(p,q)$

Capacity of $W_3(p,q)$ for several relations between p and q.

A code correcting *t* barrier errors

Code construction \mathcal{C} [Bitouze et al., 2010]:

- θ from an $(n, \mathcal{M}_{\Theta}, 2t+1)_2$ code Θ .
- λ from an $(w_H(\theta), \mathcal{M}_{\theta}, t+1)_{Q-1}$ code Λ .

Construct *Q*-ary codeword $c \in C$ using θ as an indicator for locations of non-zero symbols, whose values are given by λ .

What about beyond worst-case correction?

Ben-Hur and Cassuto

Coding on Barrier Channels

Coordinate characterization for dual-parameter (p,q) channel

Definition: Coordinate-set partition

$$\bigcup_{s=0}^4 \mathcal{S}_s = \{1, \ldots, n\}$$
 where

Coordinate set	Channel transition	Log-Likelihood (ℓ_s)
\mathcal{S}_0	$\tilde{r}_i = c_i = 0$	$\log(1-q)$
\mathcal{S}_1	$\widetilde{r}_i = c_i \neq 0$	$\log(1-p)$
\mathcal{S}_2	$\widetilde{r}_i = 0, c_i \neq 0$	$\log(p)$
\mathcal{S}_3	$\widetilde{r}_i \neq 0, c_i = 0$	$\log(q/(Q-1))$
\mathcal{S}_4	$\tilde{r}_i \neq 0, c_i \neq 0, \tilde{r}_i \neq c_i$	$-\infty$

Maximum-Likelihood decoding

Theorem: MLD for $W_Q(p,q)$

The ML codeword $c^{\textit{ML}} \in \mathcal{C}$ is the one that

maximizes
$$\sum_{s=0}^{3} \ell_{s} |\mathcal{S}_{s}|$$
, subject to $|\mathcal{S}_{4}| = 0$.

Constituent binary MLDs - to be used in new decoding algorithm:

Component 1: Indicator MLD	Component 2: Residual MLD
$\begin{array}{ll} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Input:} ~~ \tilde{r} \\ \hline \text{Find} ~~ \theta \in \Theta ~\text{that maximizes} \\ \end{array} \\ \begin{array}{l} \sum_{s=0}^{3} \ell_{s} \mathcal{S}_{s} + \ell_{1} \mathcal{S}_{4} . \\ \hline \text{Output:} ~~ \theta^{ML} \end{array} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Decomposed MLD for $\ensuremath{\mathcal{C}}$

Algorithm 1

```
Input : r - channel output
Output : c - decoded codeword (or "decoding failure")
Initialize: \Theta' \leftarrow \Theta
while not returned do
     \hat{oldsymbol{	heta}} \leftarrow \mathsf{indicator} \; \mathsf{MLD} \; \mathsf{with} \; \mathsf{input} \; \widetilde{\mathsf{r}} \; \mathsf{and} \; \mathsf{code} \; \Theta'
    \hat{oldsymbol{\lambda}} \leftarrow \mathsf{residual} \; \mathsf{MLD} \; \mathsf{with} \; \mathsf{input} \; \widetilde{\mathsf{r}} \; \mathsf{and} \; \mathsf{code} \; \mathsf{\Lambda}_{_{\!\!\mathcal{W}_{\!H}}(\hat{oldsymbol{	heta}})}
    if "no solution" then
         \Theta' \leftarrow \Theta' \setminus \hat{\theta}
    else if "multiple solutions" then
          return decoding failure
     else
          reconstruct \hat{c} from \hat{\theta} and \hat{\lambda} and return
     end if
end while
```

Ben-Hur and Cassuto

From MLD to CLD

 \bullet Algorithm 1 is equivalent to ML decoding for $\mathcal{C}.$

Theorem:

Algorithm 1 (Decomposed MLD) outputs c^{ML} , if unique.

- However, it is still impractical to implement a decoder that iterates over the entire code Θ .
- Inspired by the sequential nature of decomposed MLD, we propose *Cooperative List Decoding* (CLD).

CLD for $\ensuremath{\mathcal{C}}$

Input : \tilde{r} - channel output, L - list-size *Output* : ĉ - decoded codeword (or "decoding failure") Initialize: $\Theta' \leftarrow \{\theta_l\}_{l=1}^L \leftarrow \text{list-decoder for } \Theta$ while not returned do $\hat{oldsymbol{ heta}} \leftarrow \mathsf{indicator} \mathsf{MLD} \mathsf{ with input} \ \widetilde{r} \mathsf{ and code} \ \Theta'$ if "no solution" then $\Theta' \leftarrow \Theta' \setminus \hat{\theta}$ else if "multiple solutions" then return *decoding failure* else reconstruct \hat{c} from $\hat{\theta}$ and $\hat{\lambda}$ and return end if end while

Conceptual simulation flow

Simulations for performance evaluation

- Indicator code Θ is a Reed-Muller code $\mathcal{RM}(3,7)$ with $t_{RM} = 7$.
- Residual code Λ is shortened BCH or linear random-code (RLC).

Conclusion

Dual-parameter Barrier channel $W_Q(p,q)$ - an interesting error model.

Our main contributions include:

- Capacity for Q = 3.
- Simplified ML decoder.
- Practical decoders.

Future work:

- Capacity for general Q.
- Codes for specific (p, q).
- Decoding without a list-decoder.