
Checking Robustness to Weak 

Persistency Models

Harry Xu
University of California, Los Angeles

Brian Demsky
University of California, Irvine

Hamed Gorjiara
University of California, Irvine

Weiyu Luo
University of California, Irvine

Alex Lee
University of California, Irvine



Persistent Memory

2

● Non-volatile, byte-addressable, and high-

speed

PMEM DIMM



Persistent Memory

3

● Non-volatile, byte-addressable, and high-

speed

● Challenge:

○ The program needs to guarantee 

crash-consistency

Cache
CPU Cache

PMEM DIMM

CPU Core

load

store



Persistent Memory

4

Supporting crash consistency

● Ordering: existence of processor cache

Cache
CPU Cache

PMEM DIMM

CPU Core

load

store



Persistent Memory

5

Cache
CPU Cache

PMEM DIMM

CPU Core

load

store

Program Code

1. x = 1

2. y = 2

x=1 y=2

Supporting crash consistency

● Ordering: existence of processor cache



Persistent Memory

6

Cache
CPU Cache

PMEM DIMM

CPU Core

load

store

Program Code

1. x = 1

2. y = 2

x=1

y=2

Supporting crash consistency

● Ordering: existence of processor cache



Persistent Memory

7

Cache
CPU Cache

PMEM DIMM

CPU Core

load

store

Program Code

1. x = 1

2. y = 2 y=2

Crash

Supporting crash consistency

● Ordering: existence of processor cache



Persistent Memory

8

Supporting crash consistency

● Ordering: existence of processor cache

● Durability: using cache instructions

Cache
CPU Cache

PMEM DIMM

CPU Core

In x86:
clflush

clwb

sfence



State-of-the-Art

9

● Constructive approaches

● Testing and checking frameworks



State-of-the-Art

10

● Constructive approaches

● Testing and checking frameworks
+ Systematically 

transforming programs

- Only on lock-free data 

structure

- Inject unnecessary flush 

and fence[2,3,4]

- Memory overhead[1]

[1] Mirror: Friedman et. al. PLDI’2021

[2] Izraelevitz et. al. DISC’2016

[3] Dananjaya et. al. ASPLOS’20

[4] Venkataraman et. al. FAST’11



State-of-the-Art

11

● Constructive approaches

● Testing and checking frameworks
- Bugs with visible 

symptoms[5,6]

- User annotation or 

heuristics[1-4]

- Manual inspection of long 

execution trace[1-6]

[1] Witcher [5] Jaaru

[2] PMTest [6] Yat

[3] PMDebugger

[4] XFDetector



Strict Persistency

12

● A persistency model where

○ Persistency memory order = Volatile Memory order

Program Code

1. x = 1

2. y = 2



Strict Persistency

13

● A persistency model where

○ Persistency memory order = Volatile Memory order

● Naïve implementation

○ Using flush instructions after each memory operation

Program Code

1. x = 1

2. Flush(&x)

3. y = 2

4. Flush(&y)



Key Observation

14

Typical correct use of flush instructions in PM programs ensures:

Program executions under weak persistency semantics are equivalent to 

those under strict persistency semantics



Robustness

15

Pre-crash Execution Post-crash Execution

x=1

y=3

x=2

y=5

T1 T2

Ry = 3

y=4

Rx=2

Timeline

Weak Persistency Models

Rx = 2



Robustness

16
Weak Persistency Models Strict Persistency Models

x=1

y=3

x=2

y=5

T1 T2

y=4

Rx=2

Timeline

x=1

y=3

x=2

T1 T2

Rx=2

Timeline

Pre-crash Execution Post-crash Execution Pre-crash Execution Post-crash Execution

Ry = 3

Rx = 2

Ry = 3

Rx = 2



Robustness

17

T1 T2

y=4

Rx=2

Timeline

T1 T2

Rx=2

Pre-crash Execution Post-crash Execution Pre-crash Execution Post-crash Execution

Weak Persistency Models Strict Persistency Models

Identical Post-crash Execution

Timeline

Ry = 3

Rx = 2

Ry = 3

Rx = 2

x=1

y=3

x=2

y=5

x=1

y=3

x=2



Robustness

18

T1 T2

y=4

Rx=2

Timeline

T1 T2

Rx=2

Timeline

Pre-crash Execution Post-crash Execution Pre-crash Execution Post-crash Execution

Weak Persistency Models Strict Persistency Models

Reads-from Relation

Ry = 3

Rx = 2

Ry = 3

Rx = 2

x=1

y=3

x=2

y=5

x=1

y=3

x=2



Robustness

19

x=1

y=3

x=2

y=5

T1 T2

y=4

Rx=2

Timeline

x=1

y=3

x=2

T1 T2

Rx=2

Timeline

Pre-crash Execution Post-crash Execution Pre-crash Execution Post-crash Execution

Weak Persistency Models Strict Persistency Models

Sequenced-before Relation

Ry = 3

Rx = 2

Ry = 3

Rx = 2



Robustness

20

x=1

y=3

x=2

y=5

T1 T2

y=4

Rx=2

Timeline

x=1

y=3

x=2

T1 T2

Rx=2

Timeline

Pre-crash Execution Post-crash Execution Pre-crash Execution Post-crash Execution

Weak Persistency Models Strict Persistency Models

TSO Ordering

Ry = 3

Rx = 2

Ry = 3

Rx = 2



Robustness

21

A program is robust to a weak persistency model:

● For any crash event and any post-crash execution under the weak 

persistency model, there exists some execution under strict 

persistency model that is equivalent to it.



Robustness

22

A program is robust to a weak persistency model:

● For any crash event and any post-crash execution under the weak 

persistency model, there exists some execution under strict 

persistency model that is equivalent to it.

Robustness is sufficient condition to assure correct usage of flush and 

fence operations



Robustness and Commit Store

23

node

tmp

Commit Store



Our Solution: PSan

24

Persistent Memory Sanitizer (PSan):

● Dynamically checks robustness for programs

● Detects bugs caused by missing flushes/fences

● Bug localization

● Suggests bug fixes



● Built on top of 

Jaaru

PSan Overview

25

LLVM 

Frontend

Compile

Scheduler

Crash 

Insertion
Runtime 

System

PSan

Bug Fix

Suggestions

PM 

Program

Instrumented 

Binary

Jaaru

No

Yes

More 

Executions

?



● Built on top of 

Jaaru

● Random vs. 

model checking 

mode

PSan Overview

26

LLVM 

Frontend

Compile

Scheduler

Crash 

Insertion
Runtime 

System

PSan

PM 

Program

Instrumented 

Binary

Jaaru

Yes

No

Bug Fix

Suggestions

More 

Executions

?



PSan Key Idea

27

● PSan computes a set of strictly persistent executions whose pre-

crash executions are consistent with the post-crash execution

Pre-crash 

execution

Derived 

ExecutionDerived 

ExecutionDerived 

ExecutionDerived 

ExecutionDerived 

ExecutionDerived 

ExecutionDerived 

Executions

Valid under strict persistency model



PSan Key Idea

28

● Reason about the potential crash interval

○ Using constraints

Pre-crash execution Post-crash execution

x = 1

x = 2

Rx = ?



PSan Key Idea

29

Pre-crash execution Post-crash execution

Rx = 1

constraint

● Reason about the potential crash interval

○ Using constraints

x = 1

x = 2



PSan Key Idea

30

Pre-crash 

execution

x=1 Crash

Pre-crash Code

1. x = 1

2. y = 2

3. x = 3

4. y = 4

5. x = 5

Post-crash Code

1. r1 = y

// r1 = ???

2. r2 = x

// r2 = ???

y=2 x=3 y=4 x=5



PSan Key Idea

31

Pre-crash 

execution

x=1 Crash

Pre-crash Code

1. x = 1

2. y = 2

3. x = 3

4. y = 4

5. x = 5

Post-crash Code

1. r1 = y

// r1 = ???

2. r2 = x

// r2 = ???

y=2 x=3 y=4 x=5

x = 1

y = 2

x = 3

y = 4

>>> Crash

>>> Crash

x = 1

y = 2

>>> Crash

x = 1

>>> Crash

x = 1

y = 2

x = 3

>>> Crash

strictly persistent executions represented by the constraints 

x = 1

y = 2

x = 3

y = 4

x = 5

>>> Crash



PSan Key Idea

32

Pre-crash 

execution

x=1 Crash

Pre-crash Code

1. x = 1

2. y = 2

3. x = 3

4. y = 4

5. x = 5

Post-crash Code

1. r1 = y

// r1 = ???

2. r2 = x

// r2 = ???

y=2 x=3 y=4 x=5

x = 1

y = 2

>>> Crash

x = 1

y = 2

x = 3

>>> Crash

strictly persistent executions represented by the constraints 



PSan Key Idea

33

Pre-crash 

execution

x=1 Crash

Pre-crash Code

1. x = 1

2. y = 2

3. x = 3

4. y = 4

5. x = 5

Post-crash Code

1. r1 = y

// r1 = ???

2. r2 = x

// r2 = ???

y=2 x=3 y=4 x=5

strictly persistent executions represented by the constraints 



PSan Key Idea

34

Pre-crash 

execution

x=1 Crash

Pre-crash Code

1. x = 1

2. y = 2

3. x = 3

4. y = 4

5. x = 5

Post-crash Code

1. r1 = y

// r1 = ???

2. r2 = x

// r2 = ???

y=2 x=3 y=4 x=5

strictly persistent executions represented by the constraints 

Robustness 

Violation



Supporting Multi-threaded Programs

35

● Each thread can make different progress when a program crashes

● Each thread requires its own potential crash interval constraints

● Deducing constraints

○ TSO ordering between stores to the same variable



Supporting Multi-threaded Programs

36

Pre-crash execution Post-crash execution

Rx = 1

T1 T2

tso

x = 1

x = 2



Supporting Multi-threaded Programs

37

Pre-crash execution Post-crash execution

Rx = 1

T1 T2

tso

x = 1

x = 2



Supporting Multi-threaded Programs

38

Pre-crash execution Post-crash execution

x = 1

Flush(&x)

Rx = ?
r1 = x

Flush(&y)

T1 T2

y = r1

Ry = ?



Supporting Multi-threaded Programs

39

Pre-crash execution Post-crash execution

Rx = ?

T1 T2

Ry = ?

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1



Supporting Multi-threaded Programs

40

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = ?

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1

T1



Supporting Multi-threaded Programs

41

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1

T1



Supporting Multi-threaded Programs

42

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Robustness 

Violation

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1

T1



Supporting Multi-threaded Programs

43

● Each thread can make different progress when a program crashes

● Each thread requires its own potential crash interval constraints

● Deducing constraints

○ TSO ordering between stores to the same variable

○ Happens-before relation



Supporting Multi-threaded Programs

44

Pre-crash execution Post-crash execution

Rx = ?

T1 T2

Ry = ?

hb

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1



Supporting Multi-threaded Programs

45

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = ?

hb

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1

T1



Supporting Multi-threaded Programs

46

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

hb

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1

T1



Supporting Multi-threaded Programs

47

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

hb

Robustness 

Violation

x = 1

Flush(&x)

r1 = x = 1

T1

Flush(&y)

y = r1



Suggesting Fixes for Robustness Violations

48

● Defining a fix as a set of flush intervals

Two cases for robustness violations:

1. Reading from too old of store

2. Reading from too new of store



Suggesting Fixes for Robustness Violations

49

Pre-crash execution Post-crash execution

x=1
Ry = ?

Rx = ?

y=2

x=3

y=4

x=5

Case 1: Reading 

from too old of store



Suggesting Fixes for Robustness Violations

50

Pre-crash execution Post-crash execution

Ry = 4

Rx = ?

Case 1: Reading 

from too old of store

x=1

y=2

x=3

y=4

x=5



Suggesting Fixes for Robustness Violations

51

Pre-crash execution Post-crash execution

Ry = 4

Rx = 1

Reads from a store 

that is too old 

Case 1: Reading 

from too old of store

x=1

y=2

x=3

y=4

x=5



Suggesting Fixes for Robustness Violations

52

Pre-crash execution Post-crash execution

Ry = 4

Rx = 1

Flush interval 

suggested by PSan 

for variable X
Case 1: Reading 

from too old of store

x=1

y=2

x=3

y=4

x=5



Suggesting Fixes for Robustness Violations

53

Pre-crash execution Post-crash execution

Ry = ?

Rx = ?

Case 2: Reading from 

too new of store

x=1

y=2

x=3

y=4

x=5



Suggesting Fixes for Robustness Violations

54

Pre-crash execution Post-crash execution

Ry = 2

Rx = ?

Case 2: Reading from 

too new of store

x=1

y=2

x=3

y=4

x=5



Suggesting Fixes for Robustness Violations

55

Pre-crash execution Post-crash execution

Ry = 2

Rx = 5

Reads from a store 

that is too new 

Case 2: Reading from 

too new of store

x=1

y=2

x=3

y=4

x=5



Suggesting Fixes for Robustness Violations

56

Pre-crash execution Post-crash execution

Ry = 2

Rx = 5

Flush interval 

suggested by PSan 

for variable Y

Case 2: Reading from 

too new of store

x=1

y=2

x=3

y=4

x=5



Suggesting Fixes for Robustness Violations

57

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Special case: Multi-

threaded programs

x = 1

Flush(&x)

r1 = x

Flush(&y)

y = r1

T1



Suggesting Fixes for Robustness Violations

58

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Special case: Multi-

threaded programs

Flush(&x)

r1 = x

Flush(&y)

y = r1

T1

x = 1



Suggesting Fixes for Robustness Violations

59

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Flush interval is 

empty!!
Special case: Multi-

threaded programs

x = 1

Flush(&x) Flush(&y)

T1

r1 = x

y = r1



Suggesting Fixes for Robustness Violations

60

Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Flush interval

hb
x = 1

Flush(&x) Flush(&y)

T1

y = r1

r1 = x



Evaluation

61

Evaluated PSan on:

● A collection of data structure: RECIPE, CCEH, Fast Fair

● Popular real-world frameworks and applications: PMDK, 

Memcached, and Redis

PSan found 48 bugs of which 17 are new!



Evaluation

62

PSan found 3 types of bugs:

● Missing flush and fence operations

● Cache line alignment bugs

● Memory management bugs



Evaluation

63

PSan found 3 types of bugs:

● Missing flush and fence operations

● Cache line alignment bugs

● Memory management bugs



Evaluation

64

PSan found 3 types of bugs:

● Missing flush and fence operations

● Cache line alignment bugs

● Memory management bugs



Evaluation

65

PSan found 3 types of bugs:

● Missing flush and fence operations

● Cache line alignment bugs

● Memory management bugs

○ Garbage collection, memory allocation components



Evaluation

66

● Negligible overhead compared to Jaaru

● Average 13.1s to explore all executions revealing all bugs for each benchmark



Conclusion

Testing persistent memory program is challenging, and 

fixing persistency bugs is difficult!

67

PSan

● Presents robustness, a sufficient correctness condition

● Finds persistency bugs caused by missing flushes/fences

● Found 48 persistency bugs of which 17 are new

● Localizes persistency bugs and suggests fixes

● Available on: plrg.ics.uci.edu/psan

http://plrg.ics.uci.edu/psan

