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● Non-volatile, byte-addressable, and high-

speed

● Challenge:

○ The program needs to guarantee 

crash-consistency
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Supporting crash consistency

● Ordering: existence of processor cache
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Supporting crash consistency

● Ordering: existence of processor cache

● Durability: using cache instructions

Cache
CPU Cache

PMEM DIMM

CPU Core

In x86:
clflush

clwb

sfence
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● Constructive approaches

● Testing and checking frameworks
+ Systematically 

transforming programs

- Only on lock-free data 

structure

- Inject unnecessary flush 

and fence[2,3,4]

- Memory overhead[1]

[1] Mirror: Friedman et. al. PLDI’2021

[2] Izraelevitz et. al. DISC’2016

[3] Dananjaya et. al. ASPLOS’20

[4] Venkataraman et. al. FAST’11
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● Constructive approaches

● Testing and checking frameworks
- Bugs with visible 

symptoms[5,6]

- User annotation or 

heuristics[1-4]

- Manual inspection of long 

execution trace[1-6]

[1] Witcher [5] Jaaru

[2] PMTest [6] Yat

[3] PMDebugger

[4] XFDetector
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● A persistency model where

○ Persistency memory order = Volatile Memory order

Program Code

1. x = 1

2. y = 2
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● A persistency model where

○ Persistency memory order = Volatile Memory order

● Naïve implementation

○ Using flush instructions after each memory operation

Program Code

1. x = 1

2. Flush(&x)

3. y = 2

4. Flush(&y)
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Typical correct use of flush instructions in PM programs ensures:

Program executions under weak persistency semantics are equivalent to 

those under strict persistency semantics
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A program is robust to a weak persistency model:

● For any crash event and any post-crash execution under the weak 

persistency model, there exists some execution under strict 

persistency model that is equivalent to it.
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A program is robust to a weak persistency model:

● For any crash event and any post-crash execution under the weak 

persistency model, there exists some execution under strict 

persistency model that is equivalent to it.

Robustness is sufficient condition to assure correct usage of flush and 

fence operations



Robustness and Commit Store
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node

tmp

Commit Store
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Persistent Memory Sanitizer (PSan):

● Dynamically checks robustness for programs

● Detects bugs caused by missing flushes/fences

● Bug localization

● Suggests bug fixes



● Built on top of 

Jaaru

PSan Overview
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● Built on top of 

Jaaru

● Random vs. 

model checking 

mode

PSan Overview
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● PSan computes a set of strictly persistent executions whose pre-

crash executions are consistent with the post-crash execution

Pre-crash 

execution

Derived 

ExecutionDerived 

ExecutionDerived 

ExecutionDerived 

ExecutionDerived 

ExecutionDerived 

ExecutionDerived 

Executions

Valid under strict persistency model
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● Reason about the potential crash interval

○ Using constraints

Pre-crash execution Post-crash execution

x = 1

x = 2

Rx = ?
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Pre-crash execution Post-crash execution

Rx = 1

constraint

● Reason about the potential crash interval

○ Using constraints

x = 1

x = 2
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Pre-crash 

execution

x=1 Crash

Pre-crash Code

1. x = 1

2. y = 2

3. x = 3

4. y = 4

5. x = 5

Post-crash Code

1. r1 = y

// r1 = ???

2. r2 = x

// r2 = ???

y=2 x=3 y=4 x=5
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Pre-crash 

execution

x=1 Crash

Pre-crash Code

1. x = 1

2. y = 2
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Post-crash Code

1. r1 = y

// r1 = ???

2. r2 = x

// r2 = ???

y=2 x=3 y=4 x=5

x = 1

y = 2

x = 3

y = 4

>>> Crash

>>> Crash

x = 1

y = 2

>>> Crash

x = 1

>>> Crash

x = 1

y = 2

x = 3

>>> Crash

strictly persistent executions represented by the constraints 
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Pre-crash 

execution

x=1 Crash

Pre-crash Code

1. x = 1

2. y = 2

3. x = 3

4. y = 4

5. x = 5

Post-crash Code

1. r1 = y

// r1 = ???

2. r2 = x

// r2 = ???

y=2 x=3 y=4 x=5

strictly persistent executions represented by the constraints 

Robustness 

Violation
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● Each thread can make different progress when a program crashes

● Each thread requires its own potential crash interval constraints

● Deducing constraints

○ TSO ordering between stores to the same variable
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Pre-crash execution Post-crash execution

Rx = 1

T1 T2

tso

x = 1

x = 2
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Pre-crash execution Post-crash execution

Rx = 1

T1 T2

tso

x = 1

x = 2
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Pre-crash execution Post-crash execution

x = 1

Flush(&x)

Rx = ?
r1 = x

Flush(&y)

T1 T2

y = r1

Ry = ?
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Pre-crash execution Post-crash execution

Rx = ?

T1 T2

Ry = ?

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1
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Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = ?

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1

T1
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Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1

T1
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Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Robustness 

Violation

x = 1

Flush(&x)

r1 = x = 1

Flush(&y)

y = r1

T1
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● Each thread can make different progress when a program crashes

● Each thread requires its own potential crash interval constraints

● Deducing constraints

○ TSO ordering between stores to the same variable

○ Happens-before relation
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Pre-crash execution Post-crash execution
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Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

hb

Robustness 

Violation

x = 1

Flush(&x)

r1 = x = 1

T1

Flush(&y)

y = r1
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● Defining a fix as a set of flush intervals

Two cases for robustness violations:

1. Reading from too old of store

2. Reading from too new of store
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Pre-crash execution Post-crash execution

x=1
Ry = ?

Rx = ?

y=2

x=3

y=4

x=5

Case 1: Reading 

from too old of store
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Pre-crash execution Post-crash execution

Ry = 4

Rx = ?

Case 1: Reading 

from too old of store

x=1

y=2

x=3

y=4

x=5
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Pre-crash execution Post-crash execution

Ry = 4

Rx = 1

Reads from a store 

that is too old 

Case 1: Reading 

from too old of store

x=1

y=2

x=3

y=4

x=5
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Pre-crash execution Post-crash execution

Ry = 4

Rx = 1

Flush interval 

suggested by PSan 

for variable X
Case 1: Reading 

from too old of store

x=1

y=2

x=3

y=4

x=5



Suggesting Fixes for Robustness Violations

53

Pre-crash execution Post-crash execution

Ry = ?

Rx = ?

Case 2: Reading from 

too new of store

x=1

y=2

x=3

y=4

x=5
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Pre-crash execution Post-crash execution

Ry = 2

Rx = ?

Case 2: Reading from 

too new of store

x=1

y=2

x=3

y=4

x=5
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Pre-crash execution Post-crash execution

Ry = 2

Rx = 5

Reads from a store 

that is too new 

Case 2: Reading from 

too new of store

x=1

y=2

x=3

y=4

x=5
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Pre-crash execution Post-crash execution

Ry = 2

Rx = 5

Flush interval 

suggested by PSan 

for variable Y

Case 2: Reading from 

too new of store

x=1

y=2

x=3

y=4

x=5
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Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Special case: Multi-

threaded programs

x = 1

Flush(&x)

r1 = x

Flush(&y)

y = r1

T1
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Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Special case: Multi-

threaded programs

Flush(&x)

r1 = x

Flush(&y)

y = r1

T1

x = 1
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Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Flush interval is 

empty!!
Special case: Multi-

threaded programs

x = 1

Flush(&x) Flush(&y)

T1

r1 = x

y = r1
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Pre-crash execution Post-crash execution

Rx = 0

T2

Ry = 1

Flush interval

hb
x = 1

Flush(&x) Flush(&y)

T1

y = r1

r1 = x
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Evaluated PSan on:

● A collection of data structure: RECIPE, CCEH, Fast Fair

● Popular real-world frameworks and applications: PMDK, 

Memcached, and Redis

PSan found 48 bugs of which 17 are new!
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PSan found 3 types of bugs:

● Missing flush and fence operations

● Cache line alignment bugs

● Memory management bugs
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PSan found 3 types of bugs:

● Missing flush and fence operations

● Cache line alignment bugs

● Memory management bugs

○ Garbage collection, memory allocation components
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● Negligible overhead compared to Jaaru

● Average 13.1s to explore all executions revealing all bugs for each benchmark



Conclusion

Testing persistent memory program is challenging, and 

fixing persistency bugs is difficult!
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PSan

● Presents robustness, a sufficient correctness condition

● Finds persistency bugs caused by missing flushes/fences

● Found 48 persistency bugs of which 17 are new

● Localizes persistency bugs and suggests fixes

● Available on: plrg.ics.uci.edu/psan

http://plrg.ics.uci.edu/psan

