
PSan: Checking Robustness to Weak Persistency Models

Hamed Gorjiara Weiyu Luo Alex Lee
University of California, Irvine

Guoqing Harry Xu
University of California, Los Angeles

Brian Demsky
University of California, Irvine

1. Introduction

Bugs in the uses of flush and drain operations can be trivially
eliminated by persisting stores in the same order that they
become visible to other threads. Strict persistency [8] is such
a persistency model that ensures that the "persistency memory
order is identical to volatile memory order". Most hardware
persistent memory specifications do not provide strict persis-
tency. As a result, PM developers must explicitly use flush
instructions to ensure that program executions under weak
persistency semantics are correct. Our key observation is that
the typical correct usage of flush instructions in PM programs
ensure that program executions under weak persistency seman-
tics are equivalent to those under strict persistency semantics.
Building on this observation, we define a new notion of cor-
rectness, robustness, for programs under weak persistency
in terms of their equivalence to post-crash executions under
strict persistency. A program is robust to a weak persistency
model if, for any crash events, each post-crash execution of
the program under that weak persistency model is equivalent
to some post-crash execution after some crash event under the
strict persistency model. Robustness is a sufficient criterion
to assure correct usage of flush and drain operations—adding
more flush and drain operations to a robust program will not
alter the set of possible post-crash executions.

In general, robustness does not require a developer to in-
sert flush operations immediately after every store. Figure 1
shows an example on the x86 persistency model. Suppose
that execution of the addChild method crashes immediately
before line 6 and that after the crash the program executes the
readChild method on the same node. There are two possi-
ble post-crash executions: (1) the post-crash execution that
results from the pre-crash execution where the store of the
reference to the child field was flushed, and (2) the post-crash
execution that results from the pre-crash execution where the
store of the reference was not flushed. The first post-crash
execution is equivalent to the post-crash execution under strict
persistency where the pre-crash execution crashes before the
store in line 5. The second post-crash execution is equivalent
to the post-crash execution under strict persistency where the
pre-crash execution crashes after the store in line 5. Since all
post-crash executions of this program under the weak persis-
tency model are equivalent to some post-crash execution under
strict persistency, this example program execution is robust.

2. PSan

We develop PSan [3], a tool that dynamically checks robust-
ness for programs under the x86 persistency model and reports

1void addChild(node *ptr,
2 char * data) {
3 node * tmp = alloc_child();
4 tmp->data = data;
5 clflush(tmp, sizeof(node));
6 ptr->child = tmp;
7 clflush(&ptr->child,
8 sizeof(node *));
9}

1char * readChild(node *ptr) {
2 if (ptr->child != NULL) {
3 return ptr->child->data;
4 }
5 return NULL;
6}

Figure 1: An example of execution being robust to the x86
persistency model.

violations in a fully automated fashion. For a given execu-
tion, PSan can detect all persistency bugs due to ordering
issues in that execution; finding other types of bugs (such as
concurrency bugs) is not our focus. Given a crash event and
a post-crash execution, PSan computes a set of strictly per-
sistent executions whose pre-crash executions are consistent
with the given post-crash execution. If such strictly persistent
executions do not exist, PSan finds a robustness violation.

Our key insight is that we can efficiently compute this set
of consistent pre-crash executions under strict persistency by
reasoning about the interval in which an equivalent strictly
persistent pre-crash execution must have crashed using con-
straints. In particular, each load in the post-crash execution
that reads from a store s in the pre-crash execution under the
x86 persistency model constrains where an equivalent strictly
persistent execution may crash—the crash point must be some-
where between the store s and the next store to the same
memory location. If this set of constraints is unsatisfiable,
there is no equivalent strictly persistent execution.

1 x = 1;
2 y = 1;
3 x = 2;
4 y = 2;

1 r1 = x;
2 r2 = y;

Pre-crash execution Post-crash execution.

Figure 2: A weakly-persistent single-threaded execution that
reads r1 = 1 and r2 = 2 is not robust.

To illustrate, consider the executions in Figure 2, which
shows a single-threaded program executed under a weak per-
sistency model. If r1 = 1, we know that an equivalent strictly
persistent execution must have crashed after the assignment
x = 1 but before the assignment x = 2. If r2 = 2, then an
equivalent strictly persistent execution must have crashed after
the assignment y = 2. These two constraints are not simulta-
neously satisfiable, and therefore this execution is not robust.

To support multi-threaded programs, the key idea is that
PSan determines whether there is an equivalent trace that
can be produced by selecting different (but compatible) crash
points for different threads. Our idea for implementing this
is to have the robustness analysis compute per-thread crash



intervals and ensure that these intervals describe a prefix of
the pre-crash execution that is closed under happens-before.

2.1. Suggesting Fixes for Robustness Violations

Robustness enables PSan to infer the location of a missing
flush or drain operation. Each robustness violation involves
an earlier store that was not made persistent and a later store
that was made persistent—the earlier store is missing a flush
operation. For instance, for the execution in Figure 2, PSan
determines a flush instruction must be inserted after x = 2 to
fix the robustness violation.

In general, there are two ways to fix a robustness violation.
The first is to use flush and/or drain operations to force the
cache to write a cache line to persistent memory. The second is
to leverage the existing cache coherence mechanism to enforce
the desired ordering by locating a pair of stores for which an
ordering violation is observed on the same cache line.

There are two cases in which a robustness violation may be
reported: (1) the most recent load reads from a store that is
too old to be consistent with the strict persistency model and
(2) the most recent load reads from a store that is too new.
Reading from Too Old of Store. Figure 3-a presents a
robustness violation that occurs when the most recent load
ld⟨y⟩ reads from a store st1⟨y⟩ that is too old. This occurs
because the program is missing a flush on some newer store
st2⟨y⟩ to the same memory location. Our algorithm detects
this when the presence of the later store st2⟨y⟩ causes the
algorithm to move the end of the crash interval backward past
the beginning of the interval.

x
ld y

Post-crash
execution

Pre-crash
execution

x
st1 y

rf

x
st2 y

tso

Crash
interval

x
ld y

x

ld z

Post-crash
execution

Pre-crash
execution

x
st1 y

rf

x

st2 ytso

Crash
interval

x

st3 z

rf

hb

(a) (b)

Figure 3: (a) Reading from a store that is too old. (b) Reading
from a store that is too new.

The fix for this bug is to insert a flush and a drain that
happen after the store st2⟨y⟩ and happen before the beginning
of some crash interval.
Reading from Too New of Store. Figure 3-b presents an
execution in which the most recent load ld⟨z⟩ reads from a
store st3⟨z⟩ that is too new to be consistent with the strict
persistency model. This occurs because a previous load ld⟨y⟩
reads from a store that was too old since some store st2⟨y⟩ was
missing an appropriate flush operation. Our algorithm detects
this violation when the store st3⟨z⟩ causes the beginning of the
crash interval to be move forward past the end of the crash
interval.

The fix for this bug is to insert a flush and a drain operation
such that st2⟨y⟩ happens before the flush and drain operation
and the flush and drain operation happens before st3⟨z⟩.

3. Evaluation
We evaluated PSan on a set of data structures including
RECIPE [6], CCEH [7], and FAST_FAIR [4]. We also evalu-
ated PSan on three popular real-world frameworks: PMDK [1],
Memcached [2], and Redis [5]. Each program has a test driver
that performs operations on the data structure. PSan supports
two exploration strategies: (1) a random search mode where
explores random executions with random crash points and (2)
a model checking mode where it systematically inserts crashes
before each fence-like operation and explores all potential
load values. We evaluated all benchmarks with both strategies
except Memcached and Redis that we used random strategy
since they require an outside client.

During our experiment, PSan found a total of 48 bugs in
benchmarks of which 17 of them were not reported by any
prior testing tools. 13 bugs were related to robustness viola-
tions in the memory management code of the benchmarks. We
reported these violations to the developer of these tools and
so far, developers of CCEH and FAST_FAIR have confirmed
these violations are real bugs. For each of these violations,
PSan reports the variable that needs a flush instruction and
the precise range where the flush needs to be inserted. These
violations are cases of missing flushes/fences, cache line non-
alignment, and memory management bugs which could cause
data corruption, data loss, or memory leak. Our evaluation
shows PSan introduces minimal overhead of on average 0.001s
per execution for each benchmark compared to Jaaru the un-
derlying model checker.

References
[1] Intel Corporation. Persistent memory development kit. https://pmem.

io/pmdk/, 2020.
[2] Inc. Danga Interactive. Memcached. https://github.com/lenovo/

memcached-pmem, November 2018.
[3] Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu,

and Brian Demsky. Checking robustness to weak persistency
models. http://plrg.ics.uci.edu/wordpress/wp-content/
uploads/2022/03/psan-pldi22.pdf, Conditionally Accepted to
PLDI 2022.

[4] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
Endurable transient inconsistency in byte-addressable persistent B+-
Tree. In Proceedings of the 16th USENIX Conference on File and
Storage Technologies, FAST ’18, pages 187–200, USA, 2018. USENIX
Association.

[5] Redis Labs. Redis. https://github.com/pmem/redis, August
2020.

[6] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. Recipe: Converting concurrent DRAM indexes to
persistent-memory indexes. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pages 462–477, New York,
NY, USA, 2019. Association for Computing Machinery.

[7] Moohyeon Nam, Hokeun Cha, Young-Ri Choi, Sam H. Noh, and Beom-
seok Nam. Write-optimized dynamic hashing for persistent memory. In
Proceedings of the 17th USENIX Conference on File and Storage Tech-
nologies, FAST ’19, pages 31–44, USA, 2019. USENIX Association.

[8] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persis-
tency. In 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 265–276, Minneapolis, MN, USA, 2014.
Institute of Electrical and Electronics Engineers.

2

https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://github.com/lenovo/memcached-pmem
https://github.com/lenovo/memcached-pmem
http://plrg.ics.uci.edu/wordpress/wp-content/uploads/2022/03/psan-pldi22.pdf
http://plrg.ics.uci.edu/wordpress/wp-content/uploads/2022/03/psan-pldi22.pdf
https://github.com/pmem/redis

	Introduction
	PSan
	Suggesting Fixes for Robustness Violations

	Evaluation

