
SoftPM: Software Persistent Memory
Yuanchao Xu∗†, Wei Xu†, Kimberly Keeton†, David E. Culler†

∗North Carolina State University, †Google

Abstract—Hardware persistent memory (HardPM) offers a
promising alternative to DRAM, but the mass adoption necessary to
realize its cost advantages remains elusive, especially without broad
application demand. An alternative, long-understood approach to
fast persistence is to utilize the battery-backed DRAM that is
deployed in hyperscalar data centers [5]. We present SoftPM, a Soft-
ware Persistent Memory design that manages vulnerable DRAM-
resident updates to ensure that data is persisted in the event of a
power outage. SoftPM supports a user-directed mode by leveraging
application persistency models (e.g., logging), a transparent mode
that relies on kernel page fault support, and an explicit model that
gives the application direct control over persistence. Our imple-
mentation significantly outperforms HardPM and hybrid HardPM-
DRAM alternatives. By providing a general-purpose solution that
leverages existing infrastructure, we hope to spur wider adoption of
fast local persistence.

I. INTRODUCTION

Hardware persistent memory (HardPM) has long been prof-
fered as a promising supplement or substitute to DRAM, offering
higher density, better scaling potential, lower idle power, and
non-volatility, while retaining byte addressability [1]. A rich set
of studies explores how to better utilize HardPM or integrate it
into existing systems to improve performance, including crash-
consistent, cache-friendly, concurrent data structures [3], [9];
transaction logging designs [6]; system designs [4], [8], [10];
etc. To leverage HardPM, most of these designs are tailored
to overcome its high latency, low bandwidth, and asymmetric
read/write performance. Some augment the system with hybrid
HardPM-DRAM to provide closer-to-DRAM performance plus
persistence.

Large-scale well-engineered data centers have used battery
backup for decades. After a power outage, the battery pro-
vides power for the data center to save the current execution
state, e.g., flushing dirty DRAM content into nonvolatile storage.
Battery-backed DRAM has clear advantages over HardPM. It
has real DRAM performance, while HardPM only has one-
third of DRAM’s peak read bandwidth, one-fifth of its peak
write bandwidth, and three times the latency. Without these
performance obstacles, a battery-backed DRAM approach may
not need (or benefit from) the complexity of HardPM-motivated
software optimizations. Reusing HardPM achievements, but re-
moving unnecessary complexity, leads to a cleaner system design,
providing substantial performance improvement over potential
HardPM designs.

However, battery-backed DRAM has an inherent size con-
straint. A battery has limited capacity, enabling the data center
machines to run for a limited time, perhaps minutes, after a
power outage. The dirty content in whatever DRAM is used
to implement the persistence domain must be savable to some
nonvolatile or remote media within this time, and that process
has finite bandwidth. We define this bandwidth-time product
as the save window and the portion of the persistence domain
that has not been committed to some truly persistent media the

vulnerable subdomain. A SoftPM system must be designed so that
the size of the vulnerable subdomain never exceeds the capacity
of the save window. Prior NVDRAM work [5], [7] explored
this question from the temporal and spatial locality perspective.
However, they have two inefficiencies: (1) they overestimate the
vulnerable subdomain, as it assumes all dirty pages are related
to application persistency. (2) Without reusing and reexamining
HardPM optimizations, their work does not distinguish useful
HardPM optimizations and unnecessary HardPM optimizations,
leading to the underutilization of NVDRAM.

We explore the design and implementation of a general-purpose
Software Persistent Memory (SoftPM) system, managing the lim-
ited vulnerable subdomain by leveraging application persistency
models. First, we investigate application persistency models and
divide them into three categories: static, append-only logs, and
large in-memory persistency. Static and append-only logs are two
typical persistency models in in-memory databases. These appli-
cations declare a small region in NVDRAM or DRAM as write
buffers for logs. Most HardPM studies assume a large in-memory
persistency model, in which applications perform in-place up-
dates and reduce or even remove logs to improve performance.
Second, we design and implement three management schemes
(transparent, explicit, and user-directed) with simple userspace
interfaces that pair with the three persistency models. Our user-
directed design leverages the read-only hints from applications
to asynchronously flush logs into storage to limit log size within
the vulnerable subdomain. Our transparent design recognizes dirty
pages and limits total dirty size within the vulnerable subdomain
by actively flushing pages that are unlikely to be written to
storage. Applications can be ported to SoftPM systems with a
few code changes (100 lines of code changes in Redis [2]).
Third, we re-evaluate HardPM studies to provide HardPM insights
from a SoftPM perspective. We also evaluate simplified designs
by removing unnecessary optimizations. Results show that the
throughput of SoftPM Redis is 26%-107% higher than the Hybrid
design in various YCSB workloads.

II. DESIGN

Figure 1 provides an overview of our user-directed SoftPM
design and the transparent SoftPM design. An application cre-
ates/registers a region of address space belonging to the persis-
tence domain through a system call.

An application using the append-only log persistency model
allocates log entries in DRAM and appends log records for
write requests into the allocated entries. In the steady state,
the application ensures enough older log entries reach storage
through fsync before handling new requests. If a crash happens,
the application replays these logs on an early version in storage
to reach a consistent data state.

Figure 1 (a) shows the user-directed SoftPM design and how
it naturally fits this model. In user-directed SoftPM design, we

1



Log entries:

Application

SoftPM Userspace

Full Full Writing

Logs

Storage

Ready hints

Logs

(a) User-directed SoftPM

SoftPM pages:

Dirty Dirty Clean

Application

Read/Write

Dirty Clean

SoftPM Kernel Space

Page fault of writing 
a clean page

Dirty Page Counter

Daemon Thread
Selected dirty pages

Storage

(b) Transparent SoftPM

Flushing Queue

Daemon Thread
Logs

Fig. 1. (a) User-directed SoftPM and (b) Transparent SoftPM

simply place log entries in the mmapped SoftPM region, and
SoftPM manages this region by asynchronous flushing while
preserving the same crash-consistency requirements. We leverage
that a fully filled log entry will not be overwritten again by the
application. We provide an interface for the application to notify
SoftPM that a log entry is complete and ready to be written back
to storage by the daemon thread. The SoftPM system ensures that
it will occur even in the advent of a power failure (or upon reboot
on a non-power-related crash).

Figure 1 (b) shows the transparent SoftPM design for large
in-memory persistency model, as used in most HardPM studies.
SoftPM sets write-protected bits for all pages of mmapped
SoftPM region. An application write to a clean page leads to
a page fault. We implement a SoftPM page fault handler in the
kernel to unset the write-protected bit and increase the dirty page
counters. But, if this event would cause the vulnerable subdomain
to exceed the save-window, it delays resumption till the constraint
clears by using a kernel daemon thread to flush a selected dirty
page in the foreground. This daemon thread also proactively
performs background flushing of selected dirty pages into the
storage to maintain the save-window capacity requirement and
reduce the need for foreground flushes.

III. PRELIMINARY RESULTS

We perform our experiment on a two-socket Xeon server
equipped with a 28-core Intel Xeon Platinum 8273CL@2.20GHz.
Each socket is populated with six 32-GiB 2666MHz DDR4
DRAM DIMMs and six 512 GiB Optane DC DIMMs. The
machine is equipped with a 4 TB SSD. All client threads and
the server thread are running on different cores in one socket.

Table I summarizes the persistence options we evaluate. We use
Redis with an append-only log persistency model, which batches
updates for a second and then appends them to a (persistent)
file. The SSD 1s and the SSD record represent per-second and
per-record frequencies to flush and fsync() updates to the file.
SoftPM-T represents Redis with transparent SoftPM, and SoftPM-
U represents Redis with user-directed SoftPM.

Figure 2 (a) shows that SoftPM schemes outperform HardPM
and Hybrid schemes. In the write-heavy workload (YCSB A),
the SoftPM-T scheme is 45%-107% faster than the HardPM
scheme and is 45%-84% faster than the Hybrid. In the mostly
read workload (YCSB B), the SoftPM-T scheme is 30%-69%
faster than HardPM and is 26%-49% faster than the Hybrid. The

TABLE I
PERSISTENCY AND OPTIMIZATIONS OF 6 REDIS SCHEMES

Persistent logic Data locations
Schemes Logging Persist logs Main data Log Pers. logs Pers. data
SSD 1s Yes Yes DRAM DRAM SSD
SSD record Yes Yes DRAM DRAM SSD
Hybrid Yes No DRAM HardPM HardPM
HardPM No No HardPM HardPM
SoftPM-T No No SoftPM SSD
SoftPM-U Yes Yes SoftPM SoftPM SSD

(a) YCSB Workload A (50% GET, 50% SET) (b) YCSB Workload B (95% GET, 5% SET)

Fig. 2. (a) YCSB workload A and (b) YCSB workload B

Hybrid scheme puts indexing data structures and keys in DRAM,
but it does not fully mitigate the low performance of HardPM.

IV. CONCLUSION AND FUTURE WORK

Instead of waiting for an industry-wide transformation of
deploying HardPM (e.g., hardware, system software, applications,
etc.), SoftPM is potentially available using technology already
provisioned in data centers today. SoftPM also sets the perfor-
mance bar that future HardPM and its ecosystem will need to
beat. SoftPM also points out that it is important to pursue research
using this foundation rather than just overcoming that peculiarities
of current HardPM technology.

REFERENCES

[1] “Intel optane persistent memory.” https://www.intel.com/content/www/us/en/
architecture-and-technology/optane-dc-persistent-memory.html, online; ac-
cessed February, 2022.

[2] “Redis,” https://redis.io/, online; accessed February, 2022.
[3] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson, “Bztree: A high-

performance latch-free range index for non-volatile memory,” Proceedings
of the VLDB Endowment, vol. 11, no. 5, pp. 553–565, 2018.

[4] J. Arulraj and A. Pavlo, “How to build a non-volatile memory database sys-
tem,” in Proceedings of the 2017 ACM SIGMOD International Conference
on Management of Data. ACM, 2017.

[5] R. Kateja, A. Badam, S. Govindan, B. Sharma, and G. Ganger, “Viyojit:
Decoupling battery and dram capacities for battery-backed dram,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 613–626, 2017.

[6] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won, “Nvwal: Exploiting
nvram in write-ahead logging,” ACM SIGPLAN Notices, vol. 51, no. 4, pp.
385–398, 2016.

[7] D. Narayanan and O. Hodson, “Whole-system persistence,” in Proceedings
of the seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems, 2012, pp. 401–410.

[8] J. Shi, “Exadata with persistent memory: An epic journey.”
https://www.snia.org/sites/default/files/PM-Summit/2020/presentations/
11 PMEM Jia Shi final PM Summit 2020 v2.pdf, online; accessed
February, 2022.

[9] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-tree:
Reducing consistency cost for nvm-based single level systems,” in Proceed-
ings of the 13th USENIX Conference on File and Storage Technologies, ser.
FAST’15, 2015, pp. 167–181.

[10] W. Zhang, S. Shenker, and I. Zhang, “Persistent state machines for re-
coverable in-memory storage systems with {NVRam},” in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20),
2020, pp. 1029–1046.

2


