MD-HM: Memoization-based Molecular Dynamics Simulations on
Non-Volatile Memory-based Big Memory System

Zhen Xie
zxiel0@ucmerced.edu
University of California, Merced

1 INTRODUCTION

Molecular dynamics (MD) simulation as a computational simula-
tion method gives scientists the ability to trace atomic and molec-
ular motions and plays important roles in various fields, such as
computational chemistry, materials science, bio-informatics, high
performance applications, etc. As such, MD simulation is now an
indispensable tool to interpret long time-scale trajectories of rele-
vant bio-molecular system for new drugs and vaccines discovery.
Nanometer-scale simulation are also increasingly used in semicon-
ductor and integrated circuit design. By performing MD simulation,
these systems and their thermodynamic properties can be obtained
more easily compared with experiments.

MD is typically compute-bound and not bounded by memory
bandwidth or capacity. In particular, MD usually involves a large
number of particles; It iteratively computes energies and forces
between particles based on the computation of inter-particle poten-
tials. The calculation of potentials dominates the simulation time
(at least 90% of the total time) and has high computation intensity
(4.6-71.5 flops per byte). This calculation is based on a data structure
of a few bytes to represent a particle, consuming small memory
even for a large-scale simulation. For example, the bulk silicon sim-
ulation for 1M particles consumes only 3.6 GB memory, which is far
less than typical memory capacity in a node. The traditional perfor-
mance optimization on MD focuses on increasing instruction-level
and thread-level parallelism by loop vectorization, data alignment,
and structure transformation. Such performance optimization is
bounded by processor’s theoretical peak performance.

In this paper, we introduce a new method to improve perfor-
mance of MD by leveraging the emerging non-volatile memory-
based big memory system. In particular, we trade memory capacity
for computation capability to improve MD performance by memo-
ization. This method is motivated by the emergence of non-volatile
memory-based big memory systems. Such a big memory system
is exemplified by the recent release of Intel Optane DC persistent
memory module (PMM), which is able to provide up to 9TB main
memory in a single machine. Such a big memory system cannot be
leveraged by the traditional performance optimization on MD be-
cause of MD’s small memory consumption and compute-boundness,
but using memoization, we are able to transform large memory
capacity into performance benefit.

The memoization technique, in nature, stores results of expensive
computation to a data structure, such as a lookup table, such that
when the same input happens, the results can be returned without
performing expensive computation. Existing work in MD builds a
small lookup table (hundreds of MB to tens of GB) on DRAM to store
pre-computed results. Those efforts cannot work well when applied

*The original version [1] of the paper was published in International Conference on
Supercomputing (ICS).

Dong Li
dli35@ucmerced.edu
University of California, Merced

to the big memory systems, because of the following reasons. These
reasons fundamentally limit the feasibility of using the non-volatile
memory-based big memory to accelerate MD simulation.

First, the existing efforts replace the calculation of potential of
each pair of particles, which brings limited performance benefit
on the big memory systems. To ensure the performance benefit of
using memoization, the memory access latency to use the lookup
table must be smaller than the calculation of potential to be replaced.
Depending on processor architecture and particle-based model in
the MD simulation, the calculation of potential for each pair of
particles is at the range of tens of nanoseconds, which is smaller or
comparable to one-time search of the look up table on the traditional
DRAM. However, on the big memory platform whose most capacity
comes from slow memory (e.g., Optane DC persistent memory) with
the latency of a few microseconds for one-time search, replacing
the calculation of potential for a pair of particles with a search in
the lookup table cannot have performance benefit.

Second, the existing efforts limit the size of lookup table to tens of
GB due to the limited DRAM capacity, and the search performance
in the lookup table is not optimized for TB-scale of the big memory.
In particular, the existing efforts employ a one-dimensional array.
Such a data structure is not efficient to handle search and insertion
for a large scale lookup table, hence shrinks the performance benefit
brought by memoization on the big memory systems.

Third, the existing efforts build the lookup table before MD
simulation. The table is loaded from hard drive at runtime. While
this method is feasible for a small lookup table, it causes rather
large storage cost for a TB-scale lookup table.

In this paper, we introduce a new memoization methodology
to accelerate MD simulation to address the above problems. In
particular, we partition the computation field in MD simulation
into subgrids, and replace all pairwise computation in a subgrid as a
whole. This brings much larger performance improvement than the
traditional pairwise-based approach. Furthermore, the lookup table
is based on a tree structure for fast search and dynamically built
at runtime. Leveraging the big memory capacity of non-volatile
memory, the lookup table can be at the scale of TB, leading to
high-quality MD simulation. However, using the new memoization
methodology, we face two challenges.

First, how to represent all pair-wise computation in a subgrid
such that we can efficiently identify and replace it as a whole is
challenging. Within a subgrid, particles are distributed randomly.
Using coordinates of particles in the subgrid to represent their dis-
tribution as a record in the lookup table would lead to massive
number of records, which causes high search overhead and large
memory consumption. Furthermore, different distributions of par-
ticles can represent the same computation, which can be leveraged


https://dl.acm.org/doi/abs/10.1145/3447818.3460365

Zhen Xie and Dong Li

EZP Numerical Simulation LAMMPS BB MD-HM with RocksDB-PMEM [HEE MD-HM with two-phase LSM-tree

Total energy error using pairwise lookup table

* Total energy error using MD-HM

¥

o 10 0.0010% 1
RO =1
Elzggg" 5|5
3leg 2 2 0.0005% 2 (3

- 1 opmt

(=] %)

= S S 0.0000% &

S-w L-J EAM MEAM

Tersoff ADP G-B

AIREBO DPD

Figure 1: Performance comparison of nine MD simulations using LAMMPS, MD-HM with RocksDB-PMEM, and MD-HM with
two-phase LSM-tree. And a relative error comparison using pairwise and subgrid lookup tables.

to increase the hit rate of the lookup table. For examples, a transla-
tional movement of particles in a subgrid causes a new distribution,
but the distance between particles after the movement remains
the same, hence computation of inter-particle potential remains
the same. However recognizing the distribution similarity across
movements is challenging, because of the difference in coordinates
before and after the movement.

Second, the read/write memory access pattern to the lookup
table changes over time, demanding the lookup table to provide
high performance for both reads and writes. The memory accesses
are dominated by writes in the beginning of the MD simulation, in
order to populate lookup table. Once the lookup table is populated,
the memory accesses are dominated by reads in the remaining of
the MD simulation. The common data structures to build the lookup
table, such as B*-tree and LSM-tree, can provide high performance
for either reads or writes, but not both. Hence they lack the flexi-
bility to accommodate the variance of the memory access pattern
to the lookup table in the MD simulation.

To address the above challenges, we introduce a framework,
named MD-HM, to enable high performance memoization-based
MD simulation. To address the first challenge, we treat the distribu-
tion of particles in a subgrid as a pattern and introduce a lightweight
pattern recognition algorithm.

To address the second challenge, we introduce a new data struc-
ture (named two-phase LSM tree), which is a variant of the LSM tree.
The traditional LSM tree provides high performance for writes but
not reads. To address the above problem, the two-phase LSM tree
maintains the traditional multi-level structure in the LSM tree to
enable high-performance writes when writes dominate memory ac-
cesses in the beginning, but is compacted into a two-level structure
for a shorter read path when reads dominate memory accesses.

Our evaluation shows that MD-HM outperforms the state-of-
the-art framework by 7.6x on average in nine MD simulations,
and that MD-HM on a single big memory node reaches the
performance of the numerical simulation on eight nodes.

2 OVERVIEW OF MD-HM

We propose a subgrid lookup table-based MD simulation framework
on non-volatile memory, called MD-HM. MD simulation drives
the execution flow and queries the lookup table for computation
replacement. MD-HM employs a pattern-matching algorithm to
rapidly extract features of a subgrid and recognize it as a pattern to
search for the matched subgrid in the lookup table. The lookup table
is implemented in a two-phase LSM-tree designed to optimize both

lookup and insertion operations on DRAM-NVM heterogeneous
memory. Throughout a simulation, the replacement strategy adapts
parameters for simulation stability and lookup efficiency.

The workflow of a MD-HM simulation starts from initializing the
two-phase LSM-tree as the data storage for constructing the subgrid
lookup table. Based on the input problem, MD-HM then builds a
subgrid lookup table-based simulation using suitable subgrid size.
At each time step, to compute subgrid potentials, MD-HM tries
to identify a subgrid from the lookup table. If a match is found
(i.e., a hit), the stored potentials will be used. Otherwise (i.e., a
miss), direct numerical computation needs to be performed, and a
new subgrid-potentials pair will be inserted into the lookup table.
After the potential computation, all particles will be updated to new
positions, and their velocities will be updated for the next step.

3 EVALUATION

Platform. We evaluate MD-HM on two Intel Xeon Gold 6252N
24-core processors running Linux 5.4.0. Each socket has 12 DIMM
slots, six for 16-GB DDR4 DRAM modules, and six for 128-GB
Optane DC modules. Input problems. We use nine molecular
dynamics problems, such as, S-W, L-], EAM, MEAM, Tersoff, ADP,
G-B, AIREBO, and DPD. They cover a wide range of applications
and come from LAMMPS benchmarks. Figure 1 shows the results.

Overall, MD-HM outperforms the baseline numerical framework
(LAMMPS) on all input problems by up to 9.71%x and 7.62X on aver-
age. Without the two-phase LSM-tree data storage (i.e., MD-HM
with RocksDB-PMEM), the subgrid lookup based framework out-
performs the baseline on six problems (i.e., S-W, MEAM, Tersoff,
ADP, G-B, and AIREBO), achieving an average 4.41x speedup. How-
ever, due to the high read latency of RocksDB-PMEM, MD-HM with
RocksDB-PMEM underperforms the baseline in three problems (L-J,
EAM, and DPD). Our analysis shows that these problems have low
FLOPs (typically lower than 90) for the computation of potential,
which increases the impact of read latency due to frequent queries
to lookup table. This challenge is addressed by the shallow search
hierarchy in our proposed two-phase LSM-tree data storage. Thus,
MD-HM with the two-phase LSM-tree outperforms the RocksDB-
PMEM based implementation by an average speedup of 2.76x. We
highlight that for the computation part of MD, MD-HM with two-
phase LSM-tree can achieve higher performance, and the average
speedup is 27.93% (up to 48.07x for AIREBO problem).

REFERENCES

[1] Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li. 2021. MD-
HM: memoization-based molecular dynamics simulations on big memory system.
In Proceedings of the ACM International Conference on Supercomputing. 215-226.



	1 Introduction
	2 Overview of MD-HM
	3 Evaluation
	References

